Notice of Addendum and Clarification No. 2 Ohio River Greenway Project Jeffersonville, Indiana January 15, 2025 Page 1 of 2

NOTICE OF ADDENDUM AND CLARIFICATION NO. 2 OHIO RIVER GREENWAY PROJECT JANUARY 15, 2025 CITY OF JEFFERSONVILLE, INDIANA

To All Plan Holders of Record:

This document shall serve as notice of an addendum and clarification to the plans and specifications for the project. Each bidder shall acknowledge receipt of this addendum on the ACKNOWLEDGMENT OF RECEIPT OF ADDENDUM FORM in the Project's Contract Book. Failure to acknowledge the receipt of addendum could result in a bid being considered non-responsive and or non-responsible.

The following changes and clarifications are hereby made to the contract documents and officially incorporate this and all referenced documents into the requirements and bid documents for the project.

All registered plan holders will receive notice of this Addendum.

Plans and Specifications are revised or amended as follows:

The City of Jeffersonville has agreed to extend the bid date for the project to February 5th, 2025

1.	DELETE:	All references to the previous bid date of January 22, 2025
	ADD:	A new bid date of February 5, 2025 to replace all references in the bid
		documents.
	CLARIFICATION:	Revise seal proposal/bid submittal requirements below:

Sealed proposals shall be submitted to:	Clerk's Office
	City of Jeffersonville
	City Hall
	Suite 250
	500 Quartermaster Court
	Jeffersonville, IN 47130

Sealed proposals may be submitted by registered mail or delivered in person prior to <u>9:30 a.m. local</u> time, February 5, 2025, at which time the proposals will be publicly opened and read aloud. Proposals received after 9:30 a.m. local time will not be considered and will be returned to the bidder unopened.

2.	DELETE:	The original Itemized Proposal in the Contract Documents
	ADD:	The revised attached Itemized Proposal Dated January 15, 2025.
	CLARIFICATION:	Bid Item 21. Railing Ornamental

The actual quantity to be manufactured and installed by the Contractor is 1670 feet. The City desires approximately 318 to 323 feet (rough quantity, post spacing dependent) of railing to be manufactured and provided to the City for stock. The railing provided should be fabricated in duplication of the rail fabricated for Station 23+00 to 26+00. Bid Item 63, ORNAMENTAL RAILING FOR STOCK, has been added to the new Itemized Proposal. Contractor will be paid by measurement of quantities both provided and installed.

Notice of Addendum and Clarification No. 2 Ohio River Greenway Project Jeffersonville, Indiana January 15, 2025 Page 2 of 2

3. DELETE:
ADD:Sheet Number 8 from the original plan set.
The revised Sheet 8 from Addendum #2.

Note: The change to Sheet 8 for Addendum #2 is to remove Structure No. 201 to below revetment rip rap grade. Removal of this item shall be paid for under Item 64 of the revised Itemized Proposal. Work complete for this item shall be to remove the existing railing and stair/ramp structure to subgrade for proposed rip rap. Revetment Rip Rap, Geotextiles and Curb Quantities have been updated for proposed restoration quantities for the proposed removal. The removal of the stair/ramp structure shall include the removal of the existing railing and guardrail. All other restoration not specifically paid for by individual items shall be included in the cost for removal of this item.

- 4. An additional copy of the Geotechnical Report for the project is provided as part of this Addendum to be included in the contract documents.
- 5. The last day for questions on the project is Monday, January 27 at 12:00 PM.

Please make a note an amend all project related information and bids as required.

Respectfully Submitted,

John Beery, P.E. Beam Longest and Neff/Egis Group

IMAGINE. CREATE. ACHIEVE.

January 13, 2025

PRE-BID MEETING MINUTES

Meeting Date: January 13, 2025 Project: Ohio River Greenway Trail Construction

Attended By: Tyler Payne, Libs Alex Bend, Libs John Beery, Director, Urban Transport and Urban Development, Egis BLN Ryan Whelchel, Bridge Engineer, Egis BLN Jeff Jameson, Apex Design Shaq Parker Marty Sabla, Hall Contracting Rob Waiz, City of Jeffersonville Theresa Treadway, City of Jeffersonville Delynn Campbell, City of Jeffersonville John Kraft, MAC Construction Eric Stumler, MAC Construction

A pre-construction meeting was held on January 13, 2025 for the referenced project. A list of all attendees is reported above. The following is a summary of comments made at the meeting:

- 1. After a few introductions, Mr. Beery called the meeting to order at approximately 10:00 am (EST) and provided a brief overview of the proposed scope of work.
- 2. Prior to the meeting there was a request to extend the advertisement period to give contractors more time to develop their estimates. At that time, the City of Jeffersonville agreed to a 1 week extension, which was issued in Addendum #1.
 - a. During the meeting, it was requested that an additional week be added to provide time for estimating. The previously approved time extension set the bid opening date to 1/29/2025. The proposed request was to set the bid opening date to 2/5/2025. The City of Jeffersonville decided to discuss the additional time internally and provide clarification to the contractors.
- 3. Prior to the meeting, a railing contractor reached out to Mr. Berry to confirm that the additional railing quantity in the contractor was for stock railing, to be used for repairs in case of damage. Mr. Beery confirmed the intent of the additional railing quantity. The railing contractor pointed out that the proposed railing would have a custom profile based on the proposed trail profile, which would be difficult to repair with stock railing.
 - a. During the meeting, Mr. Waiz stated that paying for stock railing as part of this contract would be the best path forward to avoid future disputes over funding for damage repairs. The sections of railing most likely to be damaged during flood events would be stocked for future repairs. No change to the original quantity would be needed.
- 4. Mr. Beery stated that, per the project specifications, the substantially complete date for the project is July 1, 2025.
- 5. Mr. Beery announced that all bid documents are posted on Eastern Engineering's website for any interested contractor.
- 6. Mr. Beery stated that all permits for the project, CSGP, IDNR, and Army Core 401/404, have been received for the proposed work and included in the book of specifications.

IMAGINE. CREATE. ACHIEVE.

- 7. Mr. Beery opened the floor to questions and comments on the proposed bid documents.
 - a. A link to the plan room was requested by Apex Design. Mr. Beery will send a link to the contact information provided on the sign-in sheet.
 - b. MAC Construction requested additional details on the proposed cut walls. Mr. Whelchel stated that the procurement of the cut walls will follow Section 734 of the 2024 Indiana Standard Specifications. This section allows a contractor to select their preferred wall system in accordance with the approved geotechnical report.
 - c. MAC Construction requested the full geotechnical report. Mr. Beery stated that he would check the bid documents and provide clarification.
 - d. Mac Construction asked if there were any work restrictions. Ms. Rutherford stated that no work would be allowed during Thunder on the Ohio and added that work on the project would be requested to shut down on the preceding Wednesday or Thursday.
- 8. The meeting was adjourned at 10:21 am.

This is our understanding of the comments made at the meeting. If you have any additional comments or revisions, please contact us.

Very truly yours, Egis BLN USA, Inc.

John Beery, P.E., PTO

RTW/jb Enclosure

All Attendees XC: Bill Stuart, Project Coordinator, Egis BLN File #230005

BEAM, LONGEST & NEFF, LLC

BEAM, L	ONGEST & NEFF	, LLC PAGE_	OF
JOB OHIO RIVERGREENWA	7	DES[CK[DATE DATE
MEETING ATTENDANCE	SHEET		
NAME Phone	Compron Y	EMAIL	Phone
JOHN BEERY	EGIS-BLN	JOHN. BEERY @ Eg	isgroup.com
RYAN WEUCHEL	10		
Tyler Payne Alex Beard	Libs Riving Libs Parkns	tylespelibspeving Alex @ libspavia	j.com 5.com
Jeff Jameson Shaq Parkers &	Apex Design	Jeff J & Aper Shag, Parker &	Designinc.com
Marty Sabla -0735	HA II Contraction) MSAblae	HALLEY. LOM
RobWarz	City of Jeff		
There is Treadway	Cityof Jefe		
Jelynn Campbell	Cityof Jeff	dCAmpbel	11 @ Cityotsetti
John Kraft	MAC Const.	Estimaterem	acconstructions
	~		

FRIC STUMICA

MAC CONST erics @ Macconstruction, com

Consulting Engineers – Testing – Inspection Services – Analytical Laboratories

June 4, 2023

Beam, Longest and Neff, LLC 8320 Craig Street Indianapolis, Indiana 46250

Attention:	Mr. John Beery, PE, PTOE, PTP Traffic, Pedestrian, and Planning Services Manager
Reference:	Geotechnical Exploration Jeffersonville Ohio River Greenway Phase II Clark County, IN CTL Project No.: 23050035IND

Dear Mr. Beery:

CTL Engineering, Inc. has completed the geotechnical exploration for the above referenced site. This report includes the results of the field and laboratory testing, and geotechnical recommendations for the proposed Jeffersonville Ohio River Greenway, retaining walls, and earthwork related activities of the project.

Thank you for the opportunity to be of service to you on this project. If you have any questions or need further information, please contact us at (317) 295-8650.

Sincerely,

CTL ENGINEERING, INC.

her M Marca

Shawn M. Marcum, PE Geotechnical Service Line Manager

GEOTECHNICAL EXPLORATION

JEFFERSONVILLE OHIO RIVER GREENWAY PHASE II CLARK COUNTY, IN CTL PROJECT NO.: 23050035IND

PREPARED FOR:

BEAM, LONGEST AND NEFF, LLC 8320 CRAIG STREET INDIANAPOLIS, INDIANA 46250

PREPARED BY:

CTL ENGINEERING, INC. 1310 S. FRANKLIN ROAD INDIANAPOLIS, INDIANA 46239

JUNE 4, 2023

TABLE OF CONTENTS

			Page
I.	PROJI	ECT LOCATION AND DESCRIPTION	1
II.	SUBS	URFACE INVESTIGATION	1
III.	FINDI	NGS	2
IV.	DISCU	JSSION AND RECOMMENDATIONS	4
	A.	Seismic Coefficients	4
	B.	Embankments	4
	C.	Retaining Walls	6
	D.	Pavement Considerations	6
	E.	General Site Preparation and Earthwork	7
V.	CHAN	IGED CONDITIONS	8
VI.	TEST	NG AND OBSERVATION	9
VII.	CLOS	ING	9

LIST OF TABLES

Table 1 – Locations of Proposed Retaining Walls	1
Table 2 – Bedrock Location and Depth	3
Table 3 – Groundwater Readings	3
Table 4 – Soil Parameters for Pavement Design	7

LIST OF APPENDICES

- APPENDIX A GENERAL LOCATION PLAN BORING LOCATION PLANS
- APPENDIX B TEST BORING RECORDS ROCK CORE PHOTOGRAPH
- APPENDIX C LABORATORY TESTING
- APPENDIX D SOIL PROFILE
- APPENDIX E SEISMIC COEFFICIENTS
- APPENDIX F EMBANKMENT SETTLEMENT ANALYSES EMBANKMENT SLOPE STABILITY
- APPENDIX G PRELIMINARY RETAINING WALL ANALYSES

I. <u>PROJECT LOCATION AND DESCRIPTION</u>

The project identified as Jeffersonville Ohio River Greenway – Phase II is located adjacent to the Ohio River between US 31 and I-65 in the City of Jeffersonville, Indiana. The project involves the design and construction of a trail extension starting at Station 10+00.00 at Riverside Drive, extending southward and eastward along the Ohio River and ending at Station 26+72.30 Line "A", approximately 1,672 feet in length. The plans dated 3/23/2016 indicate that the Greenway will be constructed at or near the existing grade, in cut of approximately 2 feet in maximum depth and on fill up to approximately 12 feet in height. The proposed Greenway is expected to be 10 feet in width with 2-foot compacted aggregate shoulder on each side. Retaining walls are proposed at the locations summarized below in Table 1.

Station From To 19+25± 19+65± 20+75± 26+73±		Offset	Line	Wall Length	Wall Exposed Height
				(feet)	(feet)
		7.5' Rt	Α	40±	3.7
		7.5' to 8.0' Rt	Α	623±	6.6
$24 + 00 \pm$	26+73±	7.5' Lt	А	273±	3.5

 Table 1 – Locations of Proposed Retaining Walls

II. <u>SUBSURFACE INVESTIGATION</u>

Seven test borings, designated as B-1 through B-7, were drilled for the proposed greenway to depths ranging from 13.9 to 32 feet below existing grade. Approximate locations of the test borings are shown on the attached Boring Location Plan in Appendix A.

The test borings were advanced with an ATV mounted drilling rig utilizing hollow stem augers (HSA) between the time period of April 11th and April 14th, 2023. Standard Penetration Tests were conducted using a 140-pound automatic hammer falling 30 inches to drive 2-inch O.D. split barrel sampler for 18 inches. Rock coring was performed in B-7 using a 2-inch NQ core barrel and diamond bits.

Soil and rock samples obtained from the drilling and coring operation were preserved in glass jars or core boxes, and visually classified in the field by the drilling crew and in the laboratory by an engineer. The recovered soil samples were tested for Natural Moisture Content. Representative soil samples were tested for Atterberg Limits, Grain Size Distribution, Unconfined Compressive Strength, Specific Gravity, One-dimensional Consolidation, Triaxial Testing and pH testing.

Drilling, soil sampling and laboratory testing were performed following standard geotechnical engineering practices, INDOT and current AASHTO/ASTM procedures. Results from field tests are shown on the enclosed Test Boring Records in Appendix B and laboratory test results in Appendix C.

Latitude and Longitude coordinates of the test borings were estimated from Google Earth and then located using a GPS system. Station, offsets and surface elevations of the test borings were interpolated from the plans dated 3/26/15. Boring locations and surface elevations shown on the Boring Location Plans in Appendix A and on Test Boring Records in Appendix B should be considered approximate.

III. <u>FINDINGS</u>

Test borings B-1, B-4 and B-5 encountered a surface cover consisting of approximately 4 inches of hot-mix asphalt (HMA) pavement over 0 to 12 inches of sand and gravel base material. Borings B-6 and B-7 drilled within the existing trail encountered 4 to 5 inches of cement concrete pavement (PCC). Test boring B-3 encountered 2 inches of surficial soil (topsoil).

Below the surficial soil/pavement, test borings B-1, B-3 and B-5 encountered fill material to depths ranging from 3 to 12 feet. The fill material consisted of silty clay loam of A-4 and A-6 soil categories. Crushed stone with sand fill was encountered to a depth of 6 feet in Test Boring B-7. Below the fill in these borings and below the surface cover in the remaining borings, unstratified, unsorted soils consisting of silty clay loam, silty loam, sandy loam and/or sandy clay of soil categories A-4 and A-6 were encountered overlying sand, gravelly sand and/or sand and gravel of the A-1-b soil category. Standard Penetration Blowcount (N-values) values of the upper cohesive soils ranged from 3 to 11 blows per foot (bpf) and natural moisture content values ranging from 6 to 34 percent. Standard Penetration Blowcounts (N-values) values of the natural granular soils ranged from 4 to 25 blows per foot (bpf). Blowcounts in excess of 50 bpf for several inches of penetration are due to striking on bedrock, coarse aggregate, cobbles and/or boulders.

The cohesive soils exhibited Liquid Limit (LL) values ranging from 26 to 38 and Plasticity Index (PI) values ranging from 7 to 13. The pH values of the soils ranged from 5.8 to 6.5. Detailed information of soil types and standard penetration values are shown in the Test Boring Records in Appendix B and Laboratory Test Results in Appendix C. A generalized soil profile is included in Appendix D.

Below the soil overburden, the test borings encountered highly weathered to weathered, hard, highly fractured to fractured, limestone bedrock at depths summarized below in Table 2. Rock coring was performed in test boring B-7. The recovered bedrock

exhibited rock recovery values ranging from 95 to 98 percent and Rock Quality Designation (RQD) values of 10 and 45 percent, averaging 35 percent. The recovered rock exhibited a compressive strength of 6,220 psi. Detailed information of rock type and RQD values are shown in the Test Boring Records in Appendix B. The photograph of the rock core is also included in Appendix B.

Test Boring	Surface Elevation ⁽¹⁾	Be	drock	Auger Refusal on Rock	
No.		Depth (ft)	Elevation	Depth (ft)	Elevation
B-1	447.2	30.5	416.7	32.0	415.2
B-2	430.0	13.0	417.0	14.0	416.0
B-3	427.0	13.0	414.0	13.9	413.1
B-4	435.0	21.0	414.0	23.0	412.0
B-5	436.2	20.5	415.7	20.5	414.2
B-6	426.8	16.0	410.8	16.4	410.4
B-7 ⁽²⁾	424.2	14.5	409.7	15.0	409.2

⁽¹⁾ Surface elevations were estimated from Stage 1 plans dated 3/26/15 and should be considered an estimate.

⁽²⁾ Rock coring was performed.

Groundwater was recorded during the drilling operation as shown on the attached Test Boring Records in Appendix B and summarized below in Table 3. It should be noted that fluctuations in groundwater levels should be expected over time and variations in precipitation and fluctuation in the pool elevation of the adjacent Ohio River. Based on available Indiana Department of Natural Resources mapping, the 100-year flood level in the project area is at Elevation 449.7.

Boring	Gr	Cave-in		
No.	During Drilling	At Completion	Delayed Reading	Depth (feet)
B-1	28.0	Dry	Dry @ 1 hour	20.0
B-2	7.0	Dry	Dry @ 24 hours	5.8
B-3	6.0	Dry	Dry @ 24 hours	5.6
B-4	18.0	Dry	Dry @ 24 hours	13.3
B-5	17.0	Dry	Dry @ 24 hours	5.3
B-6	10.0	Dry	Dry @ 24 hours	5.0
B-7	6.0 (1)	Dry	3.7 @ 24 hours ⁽¹⁾	4.2

⁽¹⁾ Water introduced in the borehole during rock coring.

IV. DISCUSSION AND RECOMMENDATIONS

A. <u>Seismic Coefficients</u>

Based on the soil type and Standard Penetration Test (SPT), the Site Class for the specific site meets the requirements of Class C in accordance with AASHTO LRFD Bridge Design Specifications 9th Edition (2020) Table 3.10.3.1-1. From Table 3.10.6-1, Seismic Zones, an Acceleration Coefficient (S_{D1}) of 0.120 indicates the site is in Seismic Zone 1. The Site Modified Peak Ground Acceleration Coefficient (A_s , PGA_M) is 0.114. In accordance with INDOT Geotechnical Design Memorandum No. 2010-02, liquefaction assessment is not required because the site is determined to be in Seismic Zone 1. Additional seismic coefficients are provided in Appendix E.

B. <u>Embankments</u>

The proposed section of the Ohio River Greenway Phase II will be constructed mainly along the Ohio River. The proposed embankment will be constructed up to 12 feet in height. The side slope of the proposed embankment facing the Ohio River is proposed to be constructed at a slope rate of 2:1 (H:V). The inside slope of the proposed embankment will be constructed at a slope rate of 4:1 (H:V) or flatter. This construction will create a V-shape channel between the existing and proposed embankments.

Based on visual observation during field checks in 2016 and 2022, the toe of the existing embankment between approximately Stations 12+00 and 15+00 has experienced erosion and scouring. Also, at the time of field checks, the existing embankment within the proposed project area exhibited soft surface condition which may be a result seepage from the higher elevation areas and adjacent parking lots.

Based on the above considerations, construction of the proposed embankment using cohesive soil material is not recommended due to:

- 1. The V-channel between existing and proposed embankments and water seepage from higher elevations could result in unwanted heavy volume of seepage water within the proposed embankment. Water accumulation and/or seepage within the new embankment will reduce the strength of the fill with time and increase the risk of embankment failure.
- 2. Steepness of the proposed embankment side slope facing the Ohio River.

- 3. Possible erosion and scoring along the toe of the new embankment during flood events of the Ohio River.
- 4. Frequent flooding of the Ohio River in the project area resulting in possible rapid drawdown conditions within the proposed embankment.

Based on the above concerns, it is recommended that the new embankment be constructed using rock fill over permeable geotextiles up to 2 ft below the proposed trail pavement. The toe of embankment shall be protected and the face of the rock fill shall be sized to protect the slope against scour based on the velocity adjacent Ohio River.

Site preparation and recommendations for embankment construction are provided in the following paragraphs.

- a. Total settlement of the embankment fills may vary due to variations on the foundation soil's composition, thickness of fill, void ratio, depth to groundwater and loading. However, it is estimated that the total settlement below the maximum fill height (12 ft) is on the order of 1-1/2 inches.
- b. Proposed embankment fills placed on existing embankments shall be benched and compacted in accordance with Section 203.21. Soft/wet soils or loose/wet soils may be encountered beneath the proposed embankment fills depending upon time of construction, amount of precipitation and pool elevation of the Ohio River. If such soils are encountered, the soils shall be removed to a depth of 12 inches±. Geotextiles 918.02 (a) Type 2A (NW) shall be placed at the base of the rock fill. Foundation improvement will be at the discretion of the Engineer.
- c. As shown in Appendix F, slope stability analysis performed at Station 11+50 indicated a minimum safety factor of 1.7 for the embankment constructed at a slope rate of 2H:1V for a height of about 12 feet. Therefore, fill embankment side slopes constructed at a slope rate of 2H:1V or flatter as shown on the plans and cross sections are considered safe against deep seated failure if rock fill is used for the embankment construction. All slopes should be protected from erosion and scouring.
- d. Backfill materials required for subgrade construction should be placed and compacted in accordance with ISS Section 203.
- e. Temporary excavations more than 5.0 feet in depth should be sloped and/or shored according to OSHA requirements.

Geotechnical Exploration Jeffersonville Ohio River Greenway Phase II CTL Project No.: 23050035IND June 4, 2023 Page 6

C. <u>Retaining Walls</u>

Approximately 40% of the length of the proposed trail will be constructed and/or contained within retaining walls. Conventional concrete retaining walls with footings as shown on the plans are not recommended due to complexity of construction (shoring for excavations, dewatering, soft soils, etc) and the potential of reducing the slope stability of the adjacent existing embankment slopes. Therefore, we recommend the use of permanent soldier pile and lagging walls and/or sheet pile walls.

As shown in Appendix G, preliminary analyses for a soldier pile and lagging wall for the maximum exposed wall height (6.6 feet) at Station 23+00 has been performed. The preliminary analyses for this wall indicate for an exposed face of 6.6 feet, a soldier pile and lagging wall consisting of HP 12x53 steel piles spaced at 6 feet (center to center) may support the Greenway. An estimated deflection of 1/2-inch has been calculated for this model. The preliminary analyses are included in Appendix G.

Preliminary analyses for a soldier pile and lagging wall for the maximum exposed wall height (3.7 feet) at Station 19+50 has been performed. The preliminary analyses for this wall indicate for an exposed face of 3.7 feet, a soldier pile and lagging wall consisting of HP 12x53 steel piles spaced at 8 feet (center to center) may support the Greenway. An estimated deflection of 1/2-inch has been calculated for this model. The preliminary analyses are included in Appendix G.

Based on our preliminary analyses, the retaining walls along the banks of Ohio River may be constructed using soldier pile and lagging walls socketed into the underlying limestone bedrock. We recommend a 4 feet minimum socket into competent limestone for the soldier piles. After predrilling through the soil overburden, coring of the bedrock and placement of the soldier pile, the cored hole shall be backfilled with concrete and the predrilled hole through the soil overburden shall be backfill with B-borrow. Temporary casing will be needed to prevent caving of the overburden soils.

D. <u>Pavement Considerations</u>

The proposed greenway trail may be designed using the soil parameters provided in Table 4. The recommended subgrade treatment should be performed in accordance with INDOT Standard Specification Section 207.

After removal of existing pavement, surficial soils, trees including stumps, roots, and/or organically contaminated soils, the exposed foundation soils should be proofrolled in accordance with 203.26, where applicable. Depending upon the

time of construction and amount of precipitation, the foundation soils may exhibit unstable condition under proofrolling. In such an event, the foundations soils shall be improved in accordance with 203.09. Foundation improvement will be at the discretion of the Engineer.

	6
Resilient Modulus (M _R) of Prepared Subgrade	4,500 psi
Resilient Modulus (M _R) of Natural Subgrade	3,000 psi
Predominant Soil Type	Silty Clay Loam, A-6
% Passing #200	74
% Silt	51
LL	34
PL	21
PI	13
Depth to Water Table	6 feet below existing grade
Natural Density (pcf) of Natural Subgrade	125
% Moisture of Natural Subgrade	22
% Organic Content	N/A
% Marl Content	N/A
Sulfate Content, ppm	N/A
Rock Elevation	> 13 feet
Subgrade Treatment	Туре II

 Table 4 – Soil Parameters for Pavement Design

E. <u>General Site Preparation and Earthwork</u>

The following general site preparation and earthwork recommendations are provided for full depth pavement.

- 1. All surface objects, pavement, grass, vegetation, topsoil and roots, located within the construction limits, shall be cleared and grubbed in accordance with ISS Section 201.
- 2. Subsequent to site grading and breaking and/or removing the existing pavement following ISS 203.22, the exposed foundation soils should be proofrolled following ISS procedures, where applicable. Soft and/or wet

foundation soils not meeting the proofrolling requirements shall be removed and treated in general accordance with ISS 203.09.

- 3. Fluctuations in the groundwater level can occur with seasonal weather conditions and the pool elevation of the Ohio River. Excavations during construction may encounter groundwater at or near the depths shown on the attached Test Boring Records in Appendix B and will be effected by the pool level in the adjacent Ohio River. Temporary dewatering during excavation should be anticipated. Dewatering, if needed, may be accomplished using well points, sump pumps or as proposed by the contractor and approved by the Engineer.
- 4. During earthwork operations, care should be taken to provide adequate drainage on the exposed soils. The subgrade should be graded at the end of each day, to facilitate good drainage.
- 5. Borrow material needed in fill areas should be in accordance with ISS Section 211. Topsoil and/or organically contaminated materials are not acceptable for use as backfill.
- 6. The backfill should be placed and compacted in accordance with ISS Section 203. The engineered fill should not be placed in a frozen condition or over a frozen subgrade.
- 7. All subgrade soils and pavement materials should conform to the latest issue of INDOT Construction and Material Specifications.

V. <u>CHANGED CONDITIONS</u>

The evaluations, conclusions, and recommendations in this report are based on our interpretation of the field and laboratory data obtained during the exploration, our understanding of the project and our experience with similar sites and subsurface conditions using generally accepted geotechnical engineering practices. Although individual test borings are representative of the subsurface conditions at the boring locations on the dates drilled, they are not necessarily representative of the subsurface conditions between boring locations or subsurface conditions during other seasons of the year. If the scope of the project changes the recommendations may change and may require additional investigation.

Geotechnical Exploration Jeffersonville Ohio River Greenway Phase II CTL Project No.: 23050035IND June 4, 2023 Page 9

VI. <u>TESTING AND OBSERVATION</u>

During the design process, it is recommended that CTL work with the project designers to confirm that the mentioned geotechnical recommendations are properly incorporated into the final plans and specifications, and to assist with establishing criteria for the construction observation and testing. CTL is not responsible for independent conclusions, opinions and recommendations made by others based on the data and the recommendations provided in this report.

VII. <u>CLOSING</u>

The report was prepared by CTL Engineering, Inc. (Consultant) solely for the use of the Client in accordance with an executed contract. The Client's use of or reliance on this report is limited by the terms and conditions of the contract and by the qualifications and limitations stated in the report. It is also acknowledged that the Client's use of and reliance of this report is limited for reasons which include actual site conditions that may change with time; hidden conditions, not discoverable within the scope of the assessment, may exist at the site; and the scope of the investigation may have been limited by time, budget and other constraints imposed by the Client.

Neither the report, nor its contents, conclusions or recommendations, are intended for the use of any party other than the Client. Consultant and the Client assume no liability for any reliance placed on this report by such party. The rights of the Client under contract may not be assigned to any person or entity, without the consent of the Consultant which consent shall not be unreasonably withheld.

This geotechnical report does not address the environmental conditions of the site. The Consultant is not responsible for consequences or conditions arising from facts that were concealed, withheld, or not fully disclosed at the time the assessment was conducted.

To the fullest extent permitted by law, the Consultant and Client agree to indemnify and hold each other, and their officers and employees harmless from and against claims, damages, losses and expenses arising out of unknown or concealed conditions. Furthermore, neither the Consultant nor its employees shall be liable to the Owner in an amount in excess of the available professional liability insurance coverage of the Consultant. In addition, Client and Consultant agree neither shall be liable for any special, indirect or consequential damages of any kind or nature.

Geotechnical Exploration Jeffersonville Ohio River Greenway Phase II CTL Project No.: 23050035IND June 4, 2023 Page 10

The Consultant's services have been provided consistent with its professional standard of care. No other warranties are made, either expressed or implied.

Sincerely,

CTL ENGINEERING, INC.

her M Marca

Shawn M. Marcum, PE Senior Geotechnical Engineer

y ZM

Anthony Mason, PE Senior Geotechnical Engineer

APPENDIX A

GENERAL SITE PLAN BORING LOCATION PLANS

	GENERAL SIT	E PLAN	
Source: Beam, Longest and Neff, LLC		Date 5/24/2023	Oh
	CTL ENGINEERING, INC.	Scale	
	GEOTECHNICAL ENGINEERS	None	
	TESTING * INSPECTION	Drawn By	Reviewed By
ENGINEERING 😫	LABORATORY SERVICES	SAH	AK

	PROJECT LOCATION SHOW CLARK COUNTY	VN BY -	
LATI	TUDE: 38°16'3.50"N LONGITU	JDE: 85°44'52.32"W	
	INDIANA DEPARTMENT OF TR. STANDARD SPECIFICATIONS I TO BE USED WITH THESE PLA	ANSPORTATION DATED 2016 NS.	
		DESIGNATION	
	DRAWING NO.	SHEETS 1 of 42 PROJECT 140007	

hio River Greenway Phase II Jeffersonville, IN

ÿ	Page	Project No.
	1 of 1	23050035IND

BORING LOCATION PLAN									
Source: Beam, Longest and Neff, LLC		Date 6/2/2023	Ohio River Greenway Phase II						
	CTL ENGINEERING, INC.	Scale	Jerrersonvine, in						
	GEOTECHNICAL ENGINEERS	None							
	TESTING * INSPECTION	Drawn By	Reviewed By	Page	Project No.				
ENGINEERING 差	LABORATORY SERVICES	SAH	AK	1 of 2	23050035IND				

BORING LOCATION PLAN								
Source: Beam, Longest and Neff, LLC		Date 6/2/2023	Ohio River Greenway Phase II					
	CTL ENGINEERING, INC.	Scale	Jenersonville, in					
	GEOTECHNICAL ENGINEERS	None						
	TESTING * INSPECTION	Drawn By	Reviewed By	Page	Project No.			
ENGINEERING 😫	LABORATORY SERVICES	SAH	AK	2 of 3	23050035IND			

LEGEND

Test Borings

	BORING LOCATI	ON PLAN	
Source: Beam, Longest and Neff, LLC		Date 6/2/2023	Oh
	CTL ENGINEERING, INC.	Scale	
	GEOTECHNICAL ENGINEERS	None	
	TESTING * INSPECTION	Drawn By	Reviewed B
ENGINEERING 😂	LABORATORY SERVICES	SAH	AK

APPENDIX B

TEST BORING RECORDS ROCK CORE PHOTOGRAPH

SOIL DESCRIPTION

NON-COHESIVE SOIL DESCRIPTION

STANDARD PENETRATION BLOWCOUNTS PER FOOT (BPF)

Very Loose	
Loose	6 - 10
Medium Dense	
Dense	
Very Dense	Over 50

COHESIVE SOIL DESCRIPTION

STANDARD PENETRATION BLOWCOUNTS PER FOOT (BPF)

Very Soft	
Soft	
Medium Stiff	
Stiff	
Very Stiff	
Hard	Over 30

GRADATION COMPONENT

SIZE

Boulde	ers	Retained on 8"
Cobble	es	Passing 8" Retained on 3"
Gravel	Pa	assing 3" Retained on #10
Sand	Pass	ing #10 Retained on #200
Silt		0.075 mm to 0.002 mm
Clay		Smaller than 0.002 mm

MOISTURE <u>TERMS</u>

DESCRIPTION

Dry	Powdery
Slightly Moist	Below Plastic Limit
Moist	. Above Plastic, Below Liquid
Verv Moist	At Liquid
Wet	Above Liquid

		TES	T BOR	ING I	RECO	ORD								
CLIEN	т	: Beam, Longest and Neff, LLC						_	BORIN	IG NO.	:	B-	1	
PROJE	ECT	: Ohio River Greenway Phase II				_	SHEET : <u>1</u> OF <u>2</u>							
ROUT	E NO.	: Jeffersonville Ohio River Greenway 0	COUNTY	: Clar	k				DATE STARTED : 04-14-23					
LOCA	ΓΙΟΝ	: Jeffersonville, IN						_	DATE	COMPL	ETED : _	04-14	-23	
DES N	0.	: F	PROJECT N	O: 1400	07				<u>ÇTL P</u>	ROJEC [.]	TNO :	23050	035IN	ID
Boring	Elevati	on: <u>447.2 feet</u> Boring Depth : <u>32.0 feet</u>	eet	Boring	Method	: <u>HSA</u>			Ham	imer	: <u>A</u>	utoma	tic	
	Latitud	e : <u>38.268455</u> Station : <u>11+04</u>		Rig Typ	be	: CME	550	ATV	Ham	mer Eff	iciency89	9.9 D/SAL		
	Longitt	Line : "'A"		Casing	Diamete	er: <u>3.25</u>	" ID		Tem	perature	e :70	D/SAF)° F	1	
				Core S	ize	:			Wea	ither	:C	loudy		
GROU	NDWA	TER: $\underline{\vee}$ Encountered at <u>28.0 feet</u> $\underline{\Psi}$ At co	ompletion <u>Dr</u>	<u>У</u>	<u> </u>	y After		<u>1_</u> hou	irs		Caved	in at <u>2</u>	:0.0 fe	et
ratum evation	imple spth	SOIL/MATERIAL DESCRIPTION	I	ratum epth	umple umber	oT per 6"	PT per 12"	scovery (%)	oisture ontent (%)	otal Unit eight (pcf)	nconfined ompression (ksf)	A	tterbe Limits	rg ;
цщ	s S S			๛	N S	5 S	S	ž	žŭ	₽Š	Ξŭ	LL	PL	PI
446.9-	1 -			÷−0.3										
445.7	t l	SAND AND GRAVEL BASE (14") (Visual)	0.0	1.5		2								
443.7	2.5	Brown, Moist, Soft, SILTY CLAY LOAM (FI A-6 (8), Lab 4	LT) 000000	3.5	SS-1	2 3	5	67	25.1			34	21	14
					SS-2	2 2 2	4	83	23.8					
	7.5	Brown, Moist, Soft to Medium Stiff, SILTY CLAY LOAM (FILL) A-4, As Lab 1	00000000000000000000000000000000000000	000000000000000000000000000000000000000	SS-3	2 3 3	6	67	23.6					
439.2	10.0	Brown, Moist, Soft, SILTY CLAY LOAM (FI A-6, As Lab 4	н — — — — — — — — — — — — — — — — — — —	20 8.0	SS-4	2 2 3	5	83	16.1					
435.2_ 431.2_	12.5	Brown, Moist, Soft, SILTY CLAY LOAM A-4, As Lab 1		12.0 + + + + + + + + + + + + +	SS-5	2 2 3	5	83	22.6					
<u> </u>	17.5_ - - - - - - - - - - - - - - - - - - -	Brown, Moist, Medium Stiff, SANDY LOAM A-4, Lab 5	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	SS-6	3 3 3	6	100	15.2			NP	NP	NP
		Continued on next page				-								
		-	BORIN HSA - Hollo	G METH	OD Auger	55	AMPLI	NG ME	THOD	ole *	- Har	d Pen	IONS etrom	eter
_		CTL Engineering, Inc.	SFA - Solid	l Flight A	uger	ST	- She	by Tub	be Sam	nple LL	Liqu	uid Lim	nit	5.51
	TL	Phone: 317-295-8650	RC - Rock	Coring		CR	- Roc	k Core	Sampl	le PL	- Plas	stic Lir	nit Indox	
ENGINE	ERING 🛎		WD - Was	h Drilling		AC	- Aug	er Cutt	ings		CP - Dyn	amic (Cone	1
			HA - Hand	d Auger		SBS	- Sub	base S	ample		Per	<u>etrom</u>	eter T	est

HA - Hand Auger

	TEST BORING RECORD													
PROJE	T : CT :	Beam, Longest and Neff, LLC Ohio River Greenway Phase II							BORIN SHEET	IG NO. F	: :2	01 B-	<u>1</u> F :	2
Stratum Elevation	Sample Depth	SOIL/MATERIAL DESCRIPTIO	N	Stratum Depth	Sample Number	SPT per 6"	SPT per 12"	Recovery (%)	Moisture Content (%)	Total Unit Weight (pcf)	Unconfined Compression (ksf)		terber Limits	rg Pl
425.2_ 416.7_ 415.2_	0, 1 22.5 25.0 27.5 27.5 30.0 32.5 335.0 337.5 337.5 40.0 42.5 445.0	Brown, Moist, Medium Stiff, SANDY LOAN A-4, Lab 5 Brown, Slightly Moist to Wet, Medium Den GRAVELLY SAND A-1-b, As Lab 2 Gray, Hard, Highly Weathered, LIMESTON (Visual) Auger refusal encountered at 32.0 feet Bottom of Boring at 32.0 feet Boring backfilled in accordance with INDO guidelines and pavement restored with cor patch.	Ise, Ise,	_22.0 _30.5 _32.0	SS-7 SS-8 SS-9	4 6 7 5 6 50/2"	13	83 67 50	6.1					
	TL ering ^g	CTL Engineering, Inc. Phone: 317-295-8650	BORING HSA - Hollow SFA - Solid F RC - Rock (MD - Mud D WD - Wash HA - Hand	METH Stem Sight A Coring Drilling Drilling Auger	OD Auger uger	SS - ST - CR - BS - AC - SBS -	MPLI - Split - Shel - Rock - Bag - Auge - Subl	NG ME Spoor by Tub Core Samp er Cutt base S	THOD or Samp Sampl le ings ample	ole * iple LL e PL PI D(ABBR - Han - Liqu - Plas - Plas CP - Dyn Pen	EVIAT d Pen id Lim tic Lin ticity I amic (etrom	IONS etrome it nit ndex Cone eter Te	eter

		TES	T BOR	ING	RECO	DRD								
CLIEN ⁻	Г	Beam, Longest and Neff, LLC							BORIN	IG NO.	:	B-	2	
PROJE	СТ	Ohio River Greenway Phase II							SHEE	Т	: 1	0	F	1
ROUTE	E NO.	Jeffersonville Ohio River Greenway	COUNTY	: Clar	k				DATE	STARTI	ED : (04-11-	-23	
LOCAT	ION	Jeffersonville, IN							DATE	COMPL	 ETED :	04-12-	-23	
DES N	0.		PROJECT N	IO: 140	007				CTL P	ROJEC	T NO : :	23050	035IN	D
Boring	Elevatio	on: 430.0 feet Boring Depth : 14.0	feet	Boring	Method	:HSA			Ham	imer	:Au	Itoma	tic	
	Latitude	e : 38.268247 Station : 11+4	2	Rig Ty	be	: CME	550	ATV	Ham	imer Effi	ciency89	.9		
	Longitu	de <u>-85.749975</u> Offset : <u>13.0</u>	teet Rt	Casing	Diamete	er : <u>3.25</u> '	' ID		Drille	er/Inspec	ctor : <u>EL</u>	<u>)/SAH</u> % F	I	
				Core S	ize	:			Wea	ither	:Su	inny		
GROU	NDWA	TER: ∇ Encountered at <u>7.0 feet</u> Ψ At c	ompletion <u>D</u>	ry	<u> </u>	After		<u>24</u> hc	ours	No.	Caved	in at <u>5</u>	.8 fee	<u>t</u>
ratum evation	ample spth	SOIL/MATERIAL DESCRIPTION	١	ratum epth	umple umber	oT per 6"	PT per 12"	ecovery (%)	oisture ontent (%)	otal Unit eight (pcf)	nconfined ompression (ksf)	At	tterbei Limits	ġ
цщ	De De			<u>لي م</u>	ŝ	S	S	ž	žŭ	₽Š	Ξŭ	LL	PL	PI
427.0_	2.5	Brown, Moist, Soft, SILTY CLAY LOAM wi Some Organic Matter A-6, As Lab 4	th +++ +++ +++ +++++++++++++++++++++++++	+ + + + 	SS-1	2 2 3	5	83	32.3					
425.0_	5.0	Brown, Slightly Moist, Medium Stiff, SAND CLAY (Visual)	Y	5.0	SS-2	3 4 4	8	83	9.0					
<u>∦</u> 423.0 <u>∑</u>	₹ Z 7.5	Brown, Moist, Very Soft, SILTY CLAY LOA A-6, As Lab 4	M +++	4 ≁ <u>≁</u> 7.0	SS-3	1 1 2	3	33	21.2					
	10.0	Brown, Wet, Very Loose, GRAVELLY SAN A-1-b, As Lab 2	لوں کو مرکز ان میں کو مرکز میں اور فرمز محکوم محمود میں محمود محکوم محکوم مرکز میں اور محکوم مرکز میں اور محکوم مرکز میں اور محکوم مرکز میں اور محکوم م	a have the set here the	SS-4	2 2 3	5	100	16.0					
417.0_ 416.0_	- - - - - 15.0_ - -	Gray, Hard, Highly Weathered, LIMESTON (Visual) Auger refusal encountered at 14.0 feet Bottom of Boring at 14.0 feet Boring backfilled in accordance with INDO guidelines.	E	13.0 14.0	SS-5	50/2"		50						
	- 17.5_ - - 20.0_ - -													
		1	BORIN	IG METH	IOD	SA	MPLI	NG ME	THOD		ABBR	EVIAT	TIONS	
	TL ERING ^Z	CTL Engineering, Inc. Phone: 317-295-8650	HSA - Hollo SFA - Solio RC - Rocl MD - Mud WD - Was	ow Stem d Flight A k Coring Drilling h Drilling	Auger Nuger	SS ST CR BS AC	- Split - She - Roc - Bag - Aud	Spoor by Tul k Core Samp er Cutt	n Samp be Sam Sampl le ings	ole * nple LL le PL PI D0	- Han - Liqu - Plas - Plas CP - Dvn	d Pen id Lim itic Lin iticity l amic (etromo nit nit Index Cone	əter
			HA - Han	d Auger	·	SBS	- Sub	base S	ample		Pen	etrom	eter Te	est

HA - Hand Auger

		TES	ST BORI	NG	RECO	ORD								
CLIEN	т :	Beam, Longest and Neff, LLC						_	BORIN	NG NO.	:	B	.3	
PROJE	ECT :	Ohio River Greenway Phase II							SHEE	Т	:1	0	F	1
ROUT	E NO. :	Jeffersonville Ohio River Greenway	COUNTY	: Clar	k				DATE	START	ED :	04-11	-23	
LOCAT	FION :	Jeffersonville, IN						_	DATE	COMPL	.ETED : _	04-11	-23	
DES N	0. :		PROJECT NO	D: 140	007				<u>CTL P</u>	ROJEC	TNO :	23050	035IN	ID
Boring	Elevatio	n: <u>427.0 feet</u> Boring Depth : <u>13.9</u>	feet	Boring	Method	: HSA			Ham	nmer	: <u>A</u>	utoma	tic	
	Latitude	: <u>38.268012</u> Station : <u>15+0</u>	0	Rig Ty	ре	: CME	550	ATV	Ham	nmer Effi	ciency89	9.9		
	Longitud	de <u>-85.748981</u> Offset : <u>4.0 fe</u> Line :'''A'''		Casing) Diamete	er : <u>3.25</u> '	' ID		Drille	er/Inspeo perature	ctor : <u>EI</u> e :75	J/SAF 5° F	1	
				Core S	lize	:			Wea	ather	:Si	unny		
GROU	NDWAT	ER: $\underline{\nabla}$ Encountered at <u>6.0 feet</u> $\underline{\Psi}$ At c	completion <u>Dry</u>	4	_ <u>▼_Dr</u>	y After	1	<u>24</u> hc	ours		Caved	in at <u>5</u>	6 fee	<u>t</u>
tratum ilevation	iample Jepth	SOIL/MATERIAL DESCRIPTIO	N	tratum)epth	ample lumber	PT per 6"	SPT per 12"	tecovery (%)	Aoisture content (%)	otal Unit Veight (pcf)	Inconfined compression (ksf)	A	tterbe Limits	rg
ош 426.8-	00	TOPSOIL (2") (Visual)		0.2	0 Z	0 0	0)		20	->	50	LL	PL	РІ
426.8	2.5	Brown, Moist, Medium Stiff, SILTY CLAY LOAM (FILL) A-6, As Lab 4		3.0	SS-1	3 3 3	6	83	13.3					
A A A A A A A A A A A A A A A A A A A	5.0			1000 1000	SS-2	4 5 5	10	83	16.0					
	7.5	Brown, Slightly Moist to Wet, Loose to Ver Loose, GRAVELLY SAND A-1-b, As Lab 2	у У У У У	1000 1000 1000 1000	SS-3 SS-4	4 4 4 2 2	8	56 33	11.0 13.5			NP	NP	NP
414.0_	10.0_/	Gray, Hard, Highly Weathered, LIMESTON (Visual)		13.0	SS-5	2		50						
	1 [Auger refusal encountered at 13.9 feet												
	15.0_ - - -	Bottom of Boring at 13.9 feet Boring backfilled in accordance with INDO guidelines.	т											
	17.5_ _ _													
	20.0													
	ı — I	1	BORING	G METH	IOD	SA	MPLI	NG ME	THOD)	ABBR	EVIA	TIONS	
	CTL Engineering, Inc. Phone: 317-295-8650			w Stem Flight A Coring Drilling Drilling Auger	Auger Auger	SS ST CR BS AC SBS	- Split - She - Roc - Bag - Aug - Sub	Spoor by Tub k Core Samp er Cutt base S	n Samp be Sam Samp le ings ample	ple * nple LL le PL PI D(- Han - Liqu - Plas - Plas CP - Dyn Pen	id Pen id Lim stic Lin sticity amic etrom	etrom nit nit Index Cone eter T	eter est
INDOT_TE	ST BORIN	G RECORD_LL_SO 23050035IND.GPJ INDOT_DATA TEN	IPLATE.GDT	J						I				

	TEST BORING RECORD													
CLIENT	Г	Beam, Longest and Neff, LLC							BORII	NG NO.	:	B- 3	BA	
PROJE	СТ	: Ohio River Greenway Phase II							SHEE	т	: 1	0	=	1
ROUTE	E NO.	: Jeffersonville Ohio River Greenway	COUNTY	: Clar	k				DATE	START	ED :	04-11	-23	
LOCAT	ION	: Jeffersonville, IN						_	DATE	COMPL	ETED :	04-11	-23	
DES NO	0.	<u>.</u>	PROJECT N	D: 140	007				<u>ÇTL F</u>	ROJEC	TNO :	23050	035IN	D
Boring	Elevati	on: 427.0 feet Boring Depth : 3.5 fe	et	Boring	Method	: HSA			Han	nmer	: <u>A</u> ı	utoma	lic	
	Latitud	e : <u>38.267931</u> Station : <u>15+0</u>	5	Rig Ty	pe	: CME	550	ATV	Han	nmer Effi	ciency89	9.9		
	Longitu	de <u>-85.748410</u> Offset : <u>4.0 fe</u>	et Rt	Casing) Diamete	er: <u>3.25</u> '	" ID		Drill	er/Inspeo perature	ctor : <u>El</u>	<u>)/SAH</u> 5° F		
				Core S	ize	:			Wea	ather	:Si	unny		
GROU	NDWA	TER: \overline{Y} Encountered at Dry \overline{Y} At c	ompletion <u>Dr</u>	4	<u> </u>	y After		<u>24</u> hc	ours	22	Caved	in at <u>3</u>	.5 feet	<u>t</u>
ratum evation	mple pth	SOIL/MATERIAL DESCRIPTIO	N	ratum epth	imple umber	T per 6"	PT per 12"	scovery (%)	oisture ontent (%)	tal Unit eight (pcf)	nconfined ompression (ksf)	A	terbei Limits	rg
щ	s S			ŭ Q	Š	ц.	S	ž	žŭ	Ν	Ξŭ	LL	PL	PI
426.8-		TOPSOIL (2") (Visual)		-0.2										
424.0_	- - 2.5_	SILTY CLAY LOAM A-6, As Lab 4 (Refer to boring B-3 for soil description)	+ + + 4 + 4 + + 7 + + 7 + + + + + + 4 + 4 + 7	3.0	ST-1			83	9.6	135.1	0.331 @ 2.4%			
423.5g	X.	GRAVELLY SAND A-1-b As Lab 2		3.5										
		(Refer to boring B-3 for soil description)	/											
		Bottom of Boring at 3.5 feet												
	5.0	Boring backfilled in accordance with INDO guidelines.												
	- - 7.5_ - -													
	- - 10.0 -													
	- - 12.5_ - - -													
	15.0_													
		1	BORIN	G METH	IOD	SA	AMPLI	NG ME	THOE)	ABBR	EVIA	IONS	
_			HSA - Hollo	w Stem	Auger	SS ST	- Split	Spool	n Sam	ple *	- Han	d Pen	etrom	eter
//	CTL Engineering, Inc.			Coring	vuger		- sne - Roc	k Core	Samp	npie LL ile PL	∟iqu Plas	na ∟im stic Lir	nit	
ENGINE	ERING 🛎	Phone: 317-295-8650	MD - Mud	Drilling		BS ·	- Bag	Samp	le '	PI	- Plas	sticity	ndex	
			WD - Wash HA - Hand	Auger]	SBS	- Aug <u>- Su</u> b	er Cutt <u>base</u> S	ings Sample		P - Dyn Pen	amic (etrom	∠one <u>eter T</u> e	est

		TES	T BOR	NG I	RECO	DRD								
CLIEN	т	: Beam, Longest and Neff, LLC							BORI	NG NO.	:	B	-4	
PROJE	ЕСТ	: Ohio River Greenway Phase II							SHEE	т	: 1	0	F	2
ROUTI	E NO.	: Jeffersonville Ohio River Greenway	COUNTY	: Clarl	K			_	DATE	START	ED :	04-12	2-23	
LOCAT	ΓΙΟΝ	: Jeffersonville, IN						_	DATE	COMPL	ETED :_	04-12	-23	
DES N	0.	:	PROJECT N	D: 1400	07				CTL P	ROJEC	ΓΝΟ :	23050	0035IN	۱D
Boring	Elevati	on: 435.0 feet Boring Depth : 23.0 t	feet	Boring	Method	: <u>HSA</u>			Ham	nmer	: <u>A</u>	utoma	ıtic	
	Latitud	e : <u>38.267718</u> Station : <u>19+3</u>	5	Rig Typ	be	: CME	550	ATV	Ham	nmer Effi	ciency89	9.9		
	Longitu	Ide <u>-85.747595</u> Offset : <u>25.01</u>		Casing	Diamete	er : <u>3.25</u>	" ID		Drille Tem	er/Inspec	ctor : <u>EI</u> e :75	D/SAF 5° F	1	
				Core S	ze	:			Wea	ather	: <u></u> :Si	unny		
GROU	NDWA	TER: $\underline{\nabla}$ Encountered at <u>18.0 feet</u> $\underline{\Psi}$ At c	ompletion <u>Dr</u>	۷	⊥ <u>Dr</u> y	y After		<u>24</u> hc	ours	Real Provide American Science Provide American	Caved	in at <u>r</u>	<u>13.3 fe</u>	<u>et</u>
atum vation	nple pth	SOIL/MATERIAL DESCRIPTION	4	atum pth	nple mber	T per 6"	T per 12"	covery %)	isture ntent (%)	al Unit ight (pcf)	confined mpression (ksf)	A	tterbe Limits	rg s
Str	Sar Del			Str Del	Sar Nui	SP.	SP	Re(Mo Co	Ve Ve	й Ö С С	LL	PL	PI
434.7-	-	ASPHALT CONCRETE (4") (Visual)		0.3										
400.0	2.5_	Brown, Moist, Medium Stiff, SILTY CLAY LOAM A-6, As Lab 4	+ + + + + + + + +	-	SS-1	3 3 3	6	100	22.0					
432.0_			+ + + + + + + + +	3.0 - -	SS-2	2 2	5	100	25.3					
	5.0_/		+ + 4 + + 4 + + 4 + + 4	-		2	_							
	7.5		+ + + + + + + + + + + + + + + + + + + +	-	55-3	3	5	100	31.4					
	-\ 10.0	Brown, Moist to Very Moist, Soft to Medium Stiff, SILTY CLAY LOAM	1 + + 4 + + 4 + + 4 + + 4	-	SS-4	3 3 4	7	83	25.1	127.3	3.796 @ 15.0%			
<u>L</u>	12.5_ 12.5_ 15.0_ _		+ + + + + + + + + + + + + + + + + + +	-	SS-5	2 2 3	5	100	22.9					
417.0 <u>\</u>	17.5_		+ + + + + + + + + +	- - - - - - 18.0										
	20.0	Brown, Wet, Very Loose, SAND AND GRAVEL (Visual) A-1-b			SS-6	1 2 2	4	22	19.0					
		Continued on next page												
			HSA - Hollo	G METH	OD Auger	SS SS	AMPLI	ING ME	ETHOE) nle *	ABBR	REVIA	TIONS	; ieter
	TL ERING S	CTL Engineering, Inc. Phone: 317-295-8650	HSA - Hollo SFA - Solid RC - Rock MD - Mud WD - Wash	w Stem Flight A Coring Drilling Drilling	Auger .uger	SS ST CR BS AC	- Split - She - Roc - Bag - Aug	l Spoor lby Tub k Core Samp er Cutt	n Sam be San Samp le ings	pie * nple LL le PL PI DC	- Han - Liqu - Plas - Plas CP - Dyn	ia Per uid Lin stic Lin sticity namic	nit nit Index Cone	eter

INDOT_TEST BORING RECORD_LL_SO 23050035IND.GPJ INDOT_DATA TEMPLATE.GDT

		TEST	BORI	NG	RECO	ORD								
CLIEN	т:_	Beam, Longest and Neff, LLC						_	BORIN	IG NO.	:	B-	4	
PROJE	ECT :_	Ohio River Greenway Phase II						_	SHEE	Г	:2	0	=;	2
Stratum Elevation	Sample Depth	SOIL/MATERIAL DESCRIPTION		Stratum Depth	Sample Number	SPT per 6"	SPT per 12"	Recovery (%)	Moisture Content (%)	Total Unit Weight (pcf)	Unconfined Compression (ksf)	At	terbei Limits PL	rg Pl
413.0_ 412.0_	22.5_	Gray, Hard, Highly Weathered, LIMESTONE (Visual)		22.0 23.0	SS-7	50/2"		50						
	25.0	Bottom of Boring at 23.0 feet Boring backfilled in accordance with INDOT guidelines and pavement restored with conce patch.	rete											
	27.5													
	30.0													
	32.5_ _ _													
	35.0													
	37.5_													
	40.0													
	42.5													
	45.0													
		CTL Engineering, Inc. Phone: 317-295-8650	BORING HSA - Hollow SFA - Solid RC - Rock MD - Mud I VD - Wash HA - Hand ATE.GDT	METH w Stem Flight A Coring Drilling Drilling Auger	Auger Auger	SS - ST - CR - BS - AC - SBS -	AMPLI - Split - Shel - Rock - Bag - Auge - Subl	NG ME Spoor by Tub Core Samp er Cutt base S	THOD Samp Samp Sample ings ample	ple * ple LL e PL PI DC	ABBR - Han - Liqu - Plas - Plas - Plas CP - Dyn Pen	EVIAT d Pen id Lim tic Lin ticity I amic (etrom	TIONS etrome it nit ndex Cone eter Te	eter

		TES	T BORI	NG I	RECO	DRD								
CLIEN	T :	Beam, Longest and Neff, LLC							BORIN	IG NO.	:	B	-5	
PROJE	ECT :	Ohio River Greenway Phase II							SHEE	Г	:1	0	F	2
ROUTE	ENO. :	Jeffersonville Ohio River Greenway	COUNTY	: Clar	k				DATE	STARTE	ED :	04-12	-23	
LOCAT	ION :	Jeffersonville, IN						_	DATE	COMPL	ETED : _	04-12	-23	
DES N	0. :	F	PROJECT NC	D: 1400	07				ÇTL P	ROJECI	NO :	23050	035IN	iD
Boring	Elevatio	on: 436.2 feet Boring Depth : 22.0 f	eet	Boring	Method	:HSA			Ham	mer	:Aı	utoma	tic	
	Latitude	e: 38.267660 Station : 21+00)	Rig Typ	be	: CME	550	ATV	Ham	mer Effi	ciency <u>89</u>	9.9		
	Longitu	de <u>-85.746942</u> Offset : <u>13.0 f</u>	eet Lt	Casing	Diamete	r:3.25	" ID		Drille	er/Inspec	tor : <u>El</u>	<u>)∕SAF</u>)° ⊑	<u> </u>	
				Core S	ize	:			Wea	ther	: . <u></u> :Si	unny		
GROU	NDWAT	ER: ${ar $arsigma$}$ Encountered at <u>17.0 feet</u> ${ar V}$ At co	mpletion Dry		⊥ <u>Dr</u> y	After		<u>24_</u> ho	ours	No.	Caved	in at <u>5</u>	5.3 fee	<u>t</u>
ratum evation	imple spth	SOIL/MATERIAL DESCRIPTION		ratum epth	umple umber	oT per 6"	PT per 12"	scovery (%)	oisture ontent (%)	otal Unit eight (pcf)	nconfined ompression (ksf)	A	tterbei Limits	rg
т	sa			ភ្ន	N N	SF	S	ž	žŭ	₽Š	Ξŭ	LL	PL	PI
435.9-				-0.3										
434.7		SAND AND GRAVEL BASE (14") (Visual)	0.0	1.5		4								
					SS-1	5	11	100	17.9					
	2.5		0000			0								
]	Brown, Moist, Stiff to Medium Stiff, SILTY CLAY LOAM with Traces of Brick Fragme	nts boo											
	-)	and Wood (FILL)	0000		SS-2	4	9	100	14 9					
	5.0_	A-0, AS Lad 4	0000			5								
420.0			0000											
430.2_		┢──────		_6.0		3								
]X		++++		SS-3	2	5	100	25.3					
	7.5_/		++++			3								
			++++											
	-\\	Brown and Gray. Moist. Soft to Medium Stit	f. + + +		SS 4	3	6	100	20.5					
	10.0	SILTY CLAY LOAM	´ + + +		33-4	3	0	100	20.5					
		- A-4, AS Lab 1	++++											
			+ + +											
	-		++++		ет 1			100	22.2					
100.0	12.5_		++++		31-1			100	22.3					
423.2_	-		— — 	_13.0										
		7	+ + +			3								
	150	Prown Moint Soft SILTY LOAM	++++		SS-5	2	4	100	24.4					
	13.0_/	A-4, As Lab 6	++++			2								
			++++											
419 2	7 -		++++	17.0										
	17.5_				ST-2			0						
	_													
		Brown, Wet, Very Loose, GRAVELLY SANI) (ב <u>ה</u>			2								
])	A-I-D, AS Lad 2			SS-6	1	4	83	13.8					
115 7	20.0_/			20.5		3								
- 13.7														
		Continued on next page												
			BORING		OD	SA			THOD		ABBR		TIONS	-
.			SFA - Solid	v Stem Fliaht A	Auger Juaer	SS	- Split - She	lbv Tul	n Samp oe Sam	ne *	- Han - Liqu	id Pen iid Lim	ietrom 1it	eter
	T L	Dhone: 317 205 8650	RC - Rock	Coring	5	CR	- Roc	k Core	Samp	e PL	- Plas	stic Lir	nit	
ENGINE	ERING볼	· 11006. 317-280-0000	MD - Mud E	Drilling		BS	- Bag	Samp	le	PI	- Plas	sticity	Index	
			HA - Hand		1	SBS	- ruy - Sub	or oull hase 9	amnlo. Samnlo		Don - Dyll	etrom		est

INDOT_TEST BORING RECORD_LL_SO 23050035IND.GPJ INDOT_DATA TEMPLATE.GDT

CLIENT Beam Longest and Neff LLC BORING NO BORING NO BAS														
CLIENT	: Beam, Lor	ngest and Neff, LLC						_	BORIN	G NO.	:	B-	5	
PROJECT	: Ohio River	Greenway Phase II						_	SHEET	Г	:2	0	=	2
Stratum Elevation Sample		SOIL/MATERIAL DESCRIPTIO	N	Stratum Depth	Sample Number	SPT per 6"	SPT per 12"	Recovery (%)	Moisture Content (%)	Total Unit Weight (pcf)	Unconfined Compression (ksf)	LL	terber Limits PL	g Pl
	Gray, Ha	rd, Highly Weathered, LIMESTON			SS-7	50/2"		50						
414.2 22.5	(Visual) Auger ref Bottom o Boring ba	fusal encountered at 22.0 feet of Boring at 22.0 feet ackfilled in accordance with INDO	T	_22.0										
25.0_	- guideline: - patch. 	s and pavement restored with cor	ncrete											
27.5_	-													
30.0_	-													
32.5_	-													
35.0_	- - - -													
37.5_	-													
40.0_	-													
42.5_	-													
45.0_	- - - - - - -													
			BORING	S METH	IOD	SA	MPLI	NG ME	THOD		ABBR	EVIAT	IONS	
ENGINEERING	CTL E Phone	HSA - Hollov SFA - Solid RC - Rock MD - Mud I WD - Wash	w Stem Flight A Coring Drilling	Auger Auger	SS - ST - CR - BS - AC -	 Split Shell Rock Bag Auge 	Spoor by Tub Core Sampl er Cutt	n Samp be Sam Sampl e ings	ole * ple LL e PL PI DC	- Han - Liqu - Plas - Plas CP - Dyn	d Pen id Lim tic Lin ticity I amic (etrome it nit ndex Cone	eter	

		TES	T BOR	ING	RECO	ORD		TEST BORING RECORD													
CLIEN	Т	Beam, Longest and Neff, LLC							BORIN	IG NO.	:	B	6								
PROJE	СТ	: Ohio River Greenway Phase II							SHEE	т	:1	0	F	1							
ROUTE	E NO.	Jeffersonville Ohio River Greenway	COUNTY	: Clar	k				DATE	STARTE	ED :_	04-12	-23								
LOCAT	ION	: Jeffersonville, IN							DATE	COMPL	ETED : _	04-12	-23								
DES N	0.	: F	PROJECT N	O: 1400	007				<u>ÇTL P</u>	ROJECT	NO :	23050	035IN	D							
Boring	Elevatio	on: <u>426.8 feet</u> Boring Depth : <u>16.4 fe</u>	eet	Boring	Method	: <u>HSA</u>			Ham	mer	: <u>A</u>	utoma	tic								
	Latitude	e : 38.267522 Station : 22+50)	Rig Ty	be	: <u>CME</u>	550 /	ATV	Ham	mer Effi	ciency <u>89</u>).9 	1								
	LUngita	Line : ""A"		Casing	Diamete	er : <u>3.25</u> "	' ID		Tem	perature	:75	5° F									
		· · · · · · · · · · · · · · · · · · ·		Core S	ize	:			Wea	ther	:Sı	unny									
GROU	NDWA	TER:	ompletion <u>Dr</u>	У	<u> </u>	y After		<u>24</u> hc	ours		Caved	in at <u>5</u>	5.0 fee	<u>t</u>							
atum vation	nple oth	SOIL/MATERIAL DESCRIPTION	I	atum oth	nple mber	T per 6"	T per 12"	covery %)	isture ntent (%)	al Unit ight (pcf)	confined mpression (ksf)	A	tterbe Limits	rg							
Stra	Sar Dep			Stra	Sar Nur	SP-	SP	Rec	C Q	Ve		LL	PL	Ы							
426.4_	_	CEMENT CONCRETE (5") (Visual)		0.4																	
424.8_	2.5	CRUSHED STONE (19") (Visual)		2.0	SS-1	3 7 5	12	33	4.5												
Ē	- - - - - - - - - - - - - - - - - - -	Brown, Moist, Very Soft to Soft, SILTY CLA LOAM with Traces of Brick Fragments and Wood (FILL) A-4 (5), Lab 1	₹ • • • • • • • • • • • • •	0000000000000	SS-2	1 1 2	3	100	26.6												
418.8_	7.5			8.0	SS-3	1 2 2	4	67	25.6			27	19	8							
416.8 <u>\</u>	<u>-</u> 10.0	Brown, Moist, Very Soft, SILTY LOAM A-4 (3), Lab 6	+ + + · + + · + + ·	+ + + 10.0	SS-4	1 1 2	3	83	23.7			26	19	7							
411.8	12.5_ - - - 15.0	Brown, Wet, Medium Dense, SAND (Visua	I)	15.0	SS-5	2 2 23	25	22	27.2												
410.4_		Gray, Hard, Highly Weathered, LIMESTONE (Visual)		16.4	SS-6	50/3"		33													
	17 5	Bottom of Boring at 16.4 feet																			
	20.0	Boring backfilled in accordance with INDOT guidelines and pavement restored with conception.	- crete																		
	-																				
		_	BORIN		IOD Autora	SA	MPLI	NG ME	THOD)	ABBR		TIONS								
	TL ERING Z	CTL Engineering, Inc. Phone: 317-295-8650	HSA - Hollo SFA - Solid RC - Rock MD - Mud WD - Was HA - Hang	by Stem I Flight A Coring Drilling h Drilling	Auger Auger	SS - ST - CR - BS - AC - SBS -	- Split - Shel - Rocl - Bag - Aug	l Spool lby Tul k Core Samp er Cutt base S	n Samj be San Samp le ings Sample	nple LL le PL PI DC	- Han - Liqu - Plas - Plas Plas Pen	ia Pen iid Lim stic Lir sticity amic etrom	etrom nit nit Index Cone eter T	eter							

INDOT_TEST BORING RECORD_LL_SO 23050035IND.GPJ INDOT_DATA TEMPLATE.GDT

		TES	T BORI	NG I	RECO	DRD								
CLIENT	:	Beam, Longest and Neff, LLC						_	BORIN	IG NO.	:	B	7	
PROJE	ст :_	Ohio River Greenway Phase II						_	SHEE	Т	:1	0	F	2
ROUTE	NO. :	Jeffersonville Ohio River Greenway	COUNTY	: Clar	k			_	DATE	STARTI	ED :_	04-13	-23	
LOCATI	ON :_	Jeffersonville, IN						_	DATE	COMPL	ETED :	04-13	-23	
DES NO) . :		PROJECT NO	D: 1400	007				<u>ÇTL P</u>	ROJEC	TNO :	23050	035IN	ID
Boring E	Elevatior	n: <u>424.2 feet</u> Boring Depth : <u>25.0 f</u>	eet	Boring	Method	: <u>HSA</u>	, RC		Ham	imer	: <u>A</u> u	utoma	tic	
L	atitude	: <u>38.267546</u> Station : <u>26+29</u>	5	Rig Ty	be	: CME	550	ATV	Ham	imer Effi	ciency89	9.9		
	ongitua	e <u>-65.745157</u> Oliset <u>C/L</u> Line :'''A'''		Casing	Diamete	er : <u>3.25</u>	" ID		Tem	perature	cior . <u>El</u> e :78	<u>3/5AF</u> 3° F	1	
				Core S	ize	:2" N	Q		Wea	ther	:Si	unny		
GROUN	IDWATE	ER: \checkmark Encountered at <u>6.0 feet</u> \checkmark At co	ompletion <u>4.0</u>	feet	<u> </u>	<u>feet</u> A	fter	<u>24_</u> hc	ours	<u> </u>	Caved	in at <u>4</u>	.2 fee	<u>et</u>
stratum Elevation	sample Jepth	SOIL/MATERIAL DESCRIPTION	I	Stratum Depth	sample Jumber	SPT per 6"	SPT per 12"	tecovery (%)	Aoisture Content (%)	^r otal Unit Veight (pcf)	Jnconfined Compression (ksf)	A	tterbe Limits	rg
423.9		CEMENT CONCRETE (4") (Visual)	a 6.4	-0.3	0,2	0,		-	20				FL	FI
	2.5	CRUSHED STONE with SAND (FILL)			SS-1	10 19 27	46	67	4.1					
418.2	5.0	(visual)		6.0	SS-2	12 20 31	51	56	12.2					
416.2_	7.5	Gray, Moist, Soft, SILTY LOAM A-4, As Lab 6	++++ ++++ ++++ +++++	8.0	SS-3	2 2 2	4	100	26.5					
1	0.0	Gray, Very Moist to Moist, Soft to Hard, SIL	+ + + + + + + + + + + + TY + +		SS-4	1 2 3	5	100	34.4			NP	NP	NP
1	2.5_ - -	LOAM A-4 (0), Lab 3	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$			3								
409.7_ 409.2_1	15.0 	Gray, Soft to Hard, Highly Weathered, LIMESTONE (Visual) Auger refusal encountered at 15.0 feet		_14.5 _15.0	SS-5	7 46	53	67	9.1					
2	17.5_ - - 20.0 -	Gray, Hard, Highly Fractured to Moderately Fractured, Moderately Weathered, LIMESTONE (Visual)			RC-1 RQD= 10%			98						
	Ī]	Continued on next page												
		CTL Engineering, Inc. Phone: 317-295-8650	BORINC HSA - Hollov SFA - Solid RC - Rock MD - Mud I WD - Wash HA - Hand PLATE.GDT	B METH w Stem Flight A Coring Drilling Drilling Auger	OD Auger J	SS ST CR BS AC SBS	MPLI - Split - Shel - Rocl - Bag - Augo - Subl	NG ME Spoor by Tul Core Samp er Cutt base S	THOD on Samp be Sam Samp le ings ample	ole * nple LL le PL PI DC	ABBR - Han - Liqu - Plas - Plas CP - Dyn Pen	EVIA Id Pen Id Lim stic Lin sticity amic etrom	rions etrom nit nit Index Cone eter T	eter
TEST BORING RECORD														
--------------------------------------	----------------------	---	--	---	---------------------	-----------------------------------	--	--	--	---------------------------------------	--	---	---	------
CLIENT : Beam, Longest and Neff, LLC									BORING NO. : B-7					
PROJE	ECT :	Ohio River Greenway Phase II						_	SHEE	Г	:	0	=	2
Stratum Elevation	àample Depth	SOIL/MATERIAL DESCRIPTION	stratum Depth	ample Jumber	SPT per 6"	SPT per 12"	tecovery (%)	Aoisture Content (%)	⁻ otal Unit Veight (pcf)	Jnconfined Compression (ksf)	A	tterbei Limits	ĝ	
	22.5_	Gray, Hard, Highly Fractured to Moderately Fractured, Moderately Weathered, LIMESTONE (Visual)			RC-2 RQD= 45%			95					r L	
399.2_	25.0	Bottom of Boring at 25.0 feet		_25.0										
	27.5_	Boring backfilled in accordance with INDOT guidelines and pavement restored with concret patch.	te											
	30.0_ - -													
	32.5_													
	- 35.0_ - -													
	37.5_													
	40.0													
	42.5_													
	45.0_ - - -													
			BORING	METH		s/			חסאד			FVIA1		
		CTL Engineering, Inc. Phone: 317-295-8650	A - Hollov A - Solid C - Rock O - Mud E O - Wash C - Hand TE.GDT	v Stem Flight A Coring Drilling Drilling Auger	Auger Auger	SS ST CR BS AC SBS	- Split - Shel - Rock - Bag - Auge - Subl	Spoor by Tub Core Samp er Cutt base S	n Samp be Samp le ings ample	ole * nple LL le PL PI D(- Han - Liqu - Plas - Plas - Plas CP - Dyn Pen	d Pen id Lim stic Lin sticity amic (etrom	etrom it nit ndex Cone eter To	eter

ROCK CORE PHOTOGRAPH

Ohio River Greenway Phase II Jeffersonville, IN CTL Project No.: 23050035IND

Boring No.: B-8								
Core Size: 2" NQ								
Core Run	Core RunDepth (Ft.)Recovery (%)RQD (%)							
RC-1	15.0 - 20.0	98	10					
RC-2	20.0 - 25.0	95	45					

Note: Core run increases in depth from left to right and top to bottom

APPENDIX C

LABORATORY TESTING

Summary of Classification Test Results Grain Size Distribution Curves Unconfined Compressive Strength Test Results 1-D Consolidation Testing Triaxial Testing Summary of Special Laboratory Test Results

												Sheet 1	of 1
Lab No.	Boring No.	Sample No.	Depth (feet)	Textural Classification	AASHTO Classification	Gravel %	Sand %	Silt %	Clay %	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Moisture %
Lab 1	B-6	SS-3	6.0-7.5	SILTY CLAY LOAM	A-4 (5)	0.0	18.9	61.0	20.1	27.3	19.3	8.0	25.6
Lab 2	B-3	SS-4	8.5-10.0	GRAVELLY SAND	A-1-b (0)	29.4	52.3	16.3	1.9	NP	NP	NP	13.5
Lab 3	B-7	SS-4	8.5-10.0	SILTY LOAM	A-4 (0)	0.8	31.6	58.1	9.5	NP	NP	NP	34.4
Lab 4	B-1	SS-1	1.0-2.5	SILTY CLAY LOAM	A-6 (8)	9.0	17.1	50.7	23.2	34.2	20.6	13.6	25.1
Lab 5	B-1	SS-6	18.5-20.0	SANDY LOAM	A-4 (0)	6.1	57.5	32.5	4.0	NP	NP	NP	15.2
Lab 6	B-6	SS-4	8.5-10.0	SILTY LOAM	A-4 (3)	0.0	25.7	58.2	16.1	25.9	19.1	6.8	23.7

CTL Engineering, Inc. Phone: 317-295-8650

Des. No.		Project No.
Project Ty	ype:Ohio River Greenway Phase II	County
Route	Jeffersonville Ohio River Greenway	CTL Proj. No
Location	: Jeffersonville, IN	

SUMMARY OF CLASSIFICATION TEST RESULTS

:140007

: Clark

.:23050035IND

NDOT_UNCONFINED_SO_NE_RP_23050035IND.GPJ_US_LAB.GDT_5/23

NDOT_UNCONFINED_SO_NE_RP_23050035IND.GPJ_US_LAB.GDT_5/23

UNIAXIAL COMPRESSIVE STRENGTH OF INTACT ROCK SPECIMENS ASTM D 7012 (Method C) / ASTM D 4543

Client:	Beam, Longest and Neff, LLC
Project:	Ohio River Greenway Phase II
Location:	Jeffersonville, IN
CTL Project No.:	23050035IND

Boring	Core	Rock	Depth	Core	Diameter	Length	L/D	Area	Unit	Total	Tested	Compressive
No.	Run	Туре	(feet)	Weight	D	L	Ratio	(in^2)	Weight	Load	Strength	Strength
	No.			(lb)	(inches)	(inches)			(pcf)	(lbs)	(psi)	(psi)
B-8	RC-2	Limestone	22.1	1.228	2.00	4.05	2.03	3.14	166.8	19,523	6,224	6,220

One Dimensional Consolidation and Swell Properties of Soil - ASTM D 2435 CTL ENGINEERING, INC.

2860 Fisher Road

Columbus, OH 43204

Project No.:	23050035IND						
Project:	Ohio River Green	way Phase II			Sample Type:	Undisturbed Sp	becimen
Client:	Beam, Longest &	Neff,LLC			Test Date:	5/5/2023	
Boring No.:	B-5				Checked By:	SM	
Sample No.:	ST-1_11'-13'				Tested By:	MW	
Soil Description:	Brown, Lean Clay	(CL)			LL:	37	
Specific Gravity:	2.670				PL:	22	
Initial Dry Unit Weight	99.4 pcf				Initial Moisture	21.3%	
	Step No.	Applied	Final	Void	Strain	Sqrt	
		Stress	Displacement	Ratio	at End	T ₉₀	Cv
		(tsf)	(in)		(%)	(min)	(ft ² /sec)
	1	0.125	0.00275	0.66	0.27		
	2	0.25	0.00482	0.656	0.47		
	3	0.5	0.009867	0.648	0.97		
	4	1	0.01747	0.636	1.72		
	5	2	0.0341	0.609	3.35	4.6	5.30E-06
	6	4	0.06366	0.56	6.25	3.9	5.97E-06
	7	8	0.09925	0.502	9.75	4.2	5.14E-06
	8	16	0.1378	0.439	13.54	13.9	1.43E-06
	9	4	0.1276	0.456	12.53		
	10	1	0.1122	0.481	11.02		
	11	0.25	0.09589	0.508	9.42		
			CONSOLIDATIO	ON PARAM	ETERS		
	Preconsolidat	ion Pressure (tsf).	2.00		Ir	nitial Void Ratio	r 0.66
	Comp	ression Index (C) :	0.21		Cor	npression Ratio	: 0.13
	Recomp	ression Index (C_c) :	0.028		Reco	mpression Ratio	: 0.017

Project: Ohio River Greenway Phase	Location:	Project No.: 23050035IND					
Boring No.: B-5	Tested By: MW	Checked By: SM					
Sample No.: ST-1	Test Date: 05/05/23	Depth: 11'-13'					
Test No.: 1	Sample Type: Shelby Tube	Elevation:					
Description: Brown Lean Clay (CL)							
Remarks:							

Project: Ohio River Greenway Phase	Location:	Project No.: 23050035IND					
Boring No.: B-5	Tested By: MW	Checked By: SM					
Sample No.: ST-1	Test Date: 05/05/23	Depth: 11'-13'					
Test No.: 1	Sample Type: Shelby Tube	Elevation:					
Description: Brown Lean Clay (CL)							
Remarks:							

Project: Ohio River Greenway Phase	Location:	Project No.: 23050035IND					
Boring No.: B-5	Tested By: MW	Checked By: SM					
Sample No.: ST-1	Test Date: 05/05/23	Depth: 11'-13'					
Test No.: 1	Sample Type: Shelby Tube	Elevation:					
Description: Brown Lean Clay (CL)							
Remarks:							

Project: Ohio River Greenway Phase	Location:	Project No.: 23050035IND					
Boring No.: B-5	Tested By: MW	Checked By: SM					
Sample No.: ST-1	Test Date: 05/05/23	Depth: 11'-13'					
Test No.: 1	Sample Type: Shelby Tube	Elevation:					
Description: Brown Lean Clay (CL)							
Remarks:							

Project: Ohio River Greenway Phase	Location:	Project No.: 23050035IND
Boring No.: B-5	Tested By: MW	Checked By: SM
Sample No.: ST-1	Test Date: 05/05/23	Depth: 11'-13'
Test No.: 1	Sample Type: Shelby Tube	Elevation:
Description: Brown Lean Clay (CL)		
Remarks:		

Project: Ohio River Greenway Phase	Location:	Project No.: 23050035IND
Boring No.: B-5	Tested By: MW	Checked By: SM
Sample No.: ST-1	Test Date: 05/05/23	Depth: 11'-13'
Test No.: 1	Sample Type: Shelby Tube	Elevation:
Description: Brown Lean Clay (CL)		
Remarks:		

Project: Ohio River Greenway Phase	Location:	Project No.: 23050035IND						
Boring No.: B-5	Tested By: MW	Checked By: SM						
Sample No.: ST-1	Test Date: 05/05/23	Depth: 11'-13'						
Test No.: 1	Sample Type: Shelby Tube	Elevation:						
Description: Brown Lean Clay (CL)								
Remarks:								

Project: Ohio River Greenway Phase	Location:	Project No.: 23050035IND
Boring No.: B-5	Tested By: MW	Checked By: SM
Sample No.: ST-1	Test Date: 05/05/23	Depth: 11'-13'
Test No.: 1	Sample Type: Shelby Tube	Elevation:
Description: Brown Lean Clay (CL)		
Remarks:		

Project: Ohio River Greenway Phase	Location:	Project No.: 23050035IND
Boring No.: B-5	Tested By: MW	Checked By: SM
Sample No.: ST-1	Test Date: 05/05/23	Depth: 11'-13'
Test No.: 1	Sample Type: Shelby Tube	Elevation:
Description: Brown Lean Clay (CL)		
Remarks:		

	SQUARE	ROOT	of	TIME,	min	
--	--------	------	----	-------	-----	--

Project: Ohio River Greenway Phase	Location:	Project No.: 23050035IND
Boring No.: B-5	Tested By: MW	Checked By: SM
Sample No.: ST-1	Test Date: 05/05/23	Depth: 11'-13'
Test No.: 1	Sample Type: Shelby Tube	Elevation:
Description: Brown Lean Clay (CL)		
Remarks:		

Project: Ohio River Greenway Phase	Location:	Project No.: 23050035IND
Boring No.: B-5	Tested By: MW	Checked By: SM
Sample No.: ST-1	Test Date: 05/05/23	Depth: 11'-13'
Test No.: 1	Sample Type: Shelby Tube	Elevation:
Description: Brown Lean Clay (CL)		
Remarks:		

Project: Ohio River Greenway Phase	Location:	Project No.: 23050035IND
Boring No.: B-5	Tested By: MW	Checked By: SM
Sample No.: ST-1	Test Date: 05/05/23	Depth: 11'-13'
Test No.: 1	Sample Type: Shelby Tube	Elevation:
Description: Brown Lean Clay (CL)		
Remarks:		

CTL Engineering, Inc. Specific Gravity ASTM D 854 / AASHTO T 100 Method B

Client: Beam, Longest & Neff,LLC Project: Ohio River Greenway Phase II Project #: 23050035IND Date: 5/10/2023 Tech: MW Reviewed by: SR

Visual Classification: Brown, Lean Clay (CL) Weight of Oven Dry Soil passing #4 Sieve (g): 34.72 Material Excluded From Test: None Mass of Pycnometer (M_{p):} 108.28 Mass of Pyncometer, Water and Soil Solids (M_{pws,t}): 379.48

Test Temperature (°C): 21.3

Sample ID	Specific Gravity (20℃)
B-05, ST-1, 11'-13'	2.670

CONSOLIDATED UNDRAINED T		CTL ENGINEERING, INC.						
AASHTO T	297 & ASTM	2860 Fisher	2860 Fisher Road Columbus, Ohio 43204					
				Client: Bea PID NO. NA Project: Ohi Location: leff	m ,Longest & Neff,LLC o River Greenway Phase II ersonville Indiana			
Sample Type		Undisturbed			orsonvine, malana			
Date Set-up:	5/3/2023	5/3/2023	5/3/2023	Project No. 230	50035IND			
Date Sheared:	5/9/2023	05/089/23	5/9/2023	County, Rt. & Sec.: NA				
Avg. Sample Height (in.):	5.7753	5.7167	5.7573	Sample ID: B-5	, ST-1, 11'-13'			
Avg. Sample Diameter (in.):	2.8500	2.8500	2.8567	1 I				
Height-to-diameter ratio:	2.03	2.01	2.02	Lab Code No. 230	50735COL			
Wet Density (pcf):	121.5	123.9	128.1	Reviewed by: SM				
Dry Density (pcf):	99.9	100.6	105.0	<u></u>				
Void Ratio:	0.686	0.675	0.605					
Specific Gravity (assumed):	2.7	2.7	2.7		*8			
Moisture Content (%):	21.7	23.2	22.0					
Cross Sectional Area (ft ²):	0.044	0.044	0.045					
Volume (ft^3):	0.02	0.02	0.02					
Confining Pressure (psf):	720	2160	3600	POST SHEAR	15 CH			
Rate of Axial Strain (%/min):	0.2078	0.2099	0.2084	720 psf				
Compressive Strength (psf):	2024	2569	4004					
Minor Principal Stress at Failure (psf):	720	2160	3600		10.17			
Major Principal Stress at Failure (psf):	2744	4729	7604		100			
Failure Criterian (%):	Point of	f Maximum Ob	liquity					
β:	0.98	0.99	0.96					
Specimen Saturation:		Wet Method			the second in			
				POST SHEAR	POST SHEAR			
		2160 psf	a the second sec					
Grading (ASTM D422)								
% Agg:		0						
% Sand.:		11						
% Silt:		22						
% Clay:		37						
Atterberg Limits (ASTM D 4318)				POST SHEAR				
L.L.:		37		3600 psf				
P.L.:		22		1	25			
P.I.:		15						
L								

																She	eet 1 of :	2
Boring	Sample	Depth	Wet Density	Dry Density	Qu	с	Moisture	Max Dry Density	Optimum Moisture		Resilient Modulus		Sulfate	Phosphorus	Potassium	LOI	Calcium Carbonate	i pH
5			(pcf)	(pcf)	(ksf)	(ksf)	%	(pcf)	%	@ Opt.	+2% of Opt.	In-situ	(ppm)	(ppm)	(ppm)	(%)	(%)	
B-1	SS-1	1.0-2.5					25.1											6.2
B-1	SS-2	3.5-5.0					23.8											
B-1	SS-3	6.0-7.5					23.6											
B-1	SS-4	8.5-10.0					16.1										ļ	
B-1	SS-5	13.5-15.0					22.6											
B-1	SS-6	18.5-20.0					15.2											6.2
B-1	SS-7	23.5-25.0					6.1											
B-1	SS-8	28.5-30.0		1		1	12.9		1					1				
B-2	SS-1	1.0-2.5				1	32.3		1					1		6.2	7.7	
B-2	SS-2	3.5-5.0				1	9.0		1					1				
B-2	SS-3	6.0-7.5					21.2											
B-2	SS-4	8.5-10.0				1	16.0		1					1				
B-3	SS-1	1.0-2.5		1		1	13.3		1					1				
B-3	SS-2	3.5-5.0		1		1	16.0		1					1				
B-3	SS-3	6.0-7.5				1	11.0		1					1				
B-3	SS-4	8.5-10.0		1		1	13.5		1					1				6.5
B-3A	ST-1	1.5-3.5	135.1	123.3	0.331	0.165	9.6		1					1				
B-4	SS-1	1.0-2.5		1		1	22.0		1					1				
B-4	SS-2	3.5-5.0				1	25.3		1					1				
B-4	SS-3	6.0-7.5				1	31.4		1					1		3.5	5.4	
B-4	SS-4	8.5-10.0	127.3	101.8	3.796	1.898	25.1		1					1				
B-4	SS-5	13.5-15.0				1	22.9		1					1				
B-4	SS-6	18.5-20.0		1		1	19.0		1					1				
B-5	SS-1	1.0-2.5		1		1	17.9							1				
B-5	SS-2	3.5-5.0				1	14.9		1					1				
B-5	SS-3	6.0-7.5		1		1	25.3		1					1				
		·	<u> </u>														·	
							20			SPEU		/RO L	KAIUr	KI IESI	I KESU	112		
			De	s. No.	:								Project I	No. :1400)07			
EN	IGINEERING 🛓	7	Pro	oject Typ	e:Ohio	River G	reenway	Phase					County	:Clarl	ĸ			
CTL E	Ingineerir	ıg, Inc.	Ro	ute	: Jeffer	rsonville	Ohio Ri	ver Gree	enway				CTL Pro	j. No.: 2305	50035IND			
Phone	: 317-29	5-8650	Lo	cation	: Jeffer	rsonville	, IN			-								
							,											

																Sh	eet 2 of	2
Boring	Sample	Depth	Wet Density (pcf)	Dry Density (pcf)	Qu (ksf)	c (ksf)	Moisture %	Max Dry Density (pcf)	Optimum Moisture %	@ Opt.	Resilient Modulus +2% of Opt	In-situ	Sulfate (ppm)	Phosphorus (ppm)	Potassium (ppm)	LOI (%)	Calcium Carbonate (%)	pН
B-5	SS-4	8.5-10.0					20.5											
B-5	ST-1	11.0-13.0					22.3											
B-5	SS-5	13.5-15.0					24.4											
B-5	SS-6	18.5-20.0					13.8											
B-6	SS-1	1.0-2.5					4.5											
B-6	SS-2	3.5-5.0					26.6											
B-6	SS-3	6.0-7.5					25.6											5.9
B-6	SS-4	8.5-10.0					23.7											5.8
B-6	SS-5	13.5-15.0					27.2											
B-7	SS-1	1.0-2.5					4.1											
B-7	SS-2	3.5-5.0					12.2											
B-7	SS-3	6.0-7.5					26.5											
B-7	SS-4	8.5-10.0					34.4									2.4	6.4	5.8
B-7	SS-5	13.5-15.0					9.1											

CTL Engineering, Inc. Phone: 317-295-8650

Des. No.

Project Type: Ohio River Greenway Phase II Route

Jeffersonville Ohio River Greenway

Location : Jeffersonville, IN Project No. : 140007 : Clark County

CTL Proj. No.: 23050035IND

APPENDIX D

SOIL PROFILE

APPENDIX E

SEISMIC COEFFICIENTS

OSHPD

Ohio River Greenway

Latitude, Longitude: 38.267718, -85.747595

Goog	e	The Jefferson Venue Upland Jeffersonville NDIANA KENTUCKY Van Dyke Park Map data ©2023 Google						
Date		6/2/2023, 7:17:53 AM						
Design Code	Reference	Document ASCE7-10						
Risk Catego	ry	П						
Site Class		C - Very Dense Soil and Soft Rock						
Туре	Value	Description						
SS	0.205	MCE _R ground motion. (for 0.2 second period)						
S ₁	0.106	MCE _R ground motion. (for 1.0s period)						
S _{MS}	0.246	Site-modified spectral acceleration value						
S _{M1}	0.179	Site-modified spectral acceleration value						
S _{DS}	0.164	Numeric seismic design value at 0.2 second SA						
S _{D1}	0.12	Numeric seismic design value at 1.0 second SA						
Туре	Value	Description						
SDC	В	Seismic design category						
Fa	1.2	Site amplification factor at 0.2 second						
Fv	1.694	Site amplification factor at 1.0 second						
PGA	0.095	MCE _G peak ground acceleration						
F _{PGA}	1.2	Site amplification factor at PGA						
PGA _M	0.114	Site modified peak ground acceleration						
ΤL	12	Long-period transition period in seconds						
SsRT	0.205	Probabilistic risk-targeted ground motion. (0.2 second)						
SsUH	0.229	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration						
SsD	1.5	Factored deterministic acceleration value. (0.2 second)						
S1RT	0.106	Probabilistic risk-targeted ground motion. (1.0 second)						
S1UH	0.124	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.						
S1D	0.6	Factored deterministic acceleration value. (1.0 second)						
PGAd	0.5	Factored deterministic acceleration value. (Peak Ground Acceleration)						
PGA _{UH}	0.095	Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration						
C _{RS}	0.894	Mapped value of the risk coefficient at short periods						
C _{R1}	0.856	Mapped value of the risk coefficient at a period of 1 s						
CV		Vertical coefficient						
DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC /OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

APPENDIX F

EMBANKMENT SETTLEMENT ANALYSES EMBANKMENT SLOPE STABILITY

SETTLEMENT ANALYSIS Station 11+50, Borings B-1 and B-2

Project:	Ohio River Greenway
Location:	Jeffersonville, IN
CTL Project No.:	23050035IND

DATA

Existing Grade	= 431.0	feet
Groundwater Depth	= 424.0	feet
Proposed Embankment Elevation	= 442.5	feet
Embankment Fill, unit weight	= 125	pcf
Embankment Height	= 11.5	feet
Estimated Embankment Pressure	= 1437.5	psf

Calculation

Delta S = H [$C_c / (1 + e_o)$] log [((Po + Delta P) / Po)]
Delta S = H [$C_r / (1 + e_o)$] log [((Po + Delta P) / Po)]
Delta S = $H[C_c/(1+e_o)] \log[((Po+Delta P)/Pc)]+H[C_r/(1+eo)] \log[((Pc)/Po)]$
Delta S= H [(1 / BCI)] log [(Po + Delta P) / Po)]

Normally Consolidated Overconsolidated with $P_F < P_c$ OC with $P_o < P_c < P_F$ Cohesionless

Soil Layer	А	В	С	D	E	F
Soil Type	Silty Clay	Silty Clay	Sand	Sand		
Son type	Loam	Loam	Sanu	Saliu		
Strata Top Elevation (E1)	431.0	427.0	423.0	420.0		
Strata Bottom Elevation (E2)	427.0	423.0	420.0	416.0		
Soil Strata Thickness (H = E1-E2)), feet	4.0	4.0	3.0	4.0		
Midpoint Elevation (E3 = E1-H/2)	429.0	425.0	421.5	418.0		
Total Depth to Midpoint (d = E1-E3), feet	13.5	17.5	21.0	24.5		
Depth from Bottom Elevation to Midpoint (Z), ft	2.0	6.0	9.5	13.0		
Moisture Content, w	32.0	21.0	16.0	13.0		
Specific Gravity, Gs	2.67	2.67	2.65	2.65		
Soil Total Unit Weight (d), pcf	125.0	125.0	125.0	125.0		
Effective Soil Unit Weight (d'), pcf	125.0	135.0	62.6	62.6		
Liquid Limit, LL	37	37	NP	NP		
Plastic Limit, PL	22	22	NP	NP		
Average Blowcounts, N	5	6	5	11		
Overburden Correction Factor, CN	1.70	1.32	1.19	1.13		
Hammer Efficiency, (%)	90	90	90	90		
Average Corrected Blowcounts, N1 ₆₀	13	12	9	19		

SETTLEMENT ANALYSIS Station 11+50, Borings B-1 and B-2

Project:	Ohio River Gree	nway				
Location:	Jeffersonville, IN	l				
CTL Project No.:	23050035IND					
Void Ratio, eo = (Gs * w) / 100		0.854	0.561			
Compression Index, Cc (From Consol	. Test)	0.210	0.210			
Compression Index, Cr (From Consol	Test)	0.028	0.028			
Undrained Shear Strength, S _u (psf)		1000	1000			
S _u /P ₀		4.00	1.30			
OCR		6.00	3.30			
Preconsolidation Pressure, Pc (psf)*		1500	2540			
BCI' (FHWA)				55	75	
Overburden Pressure, Po (psf)		250	770	1134	1353	

Soil parameters eo, Cc, Cr, OCR and C' were estimated using FHWA-NHI-05-123 and FHWA-06-088

Settlement Calculation

Half Embankment Width (b), feet=	5				1438	
Embankment Slope Width (a), feet=	20					
Soil Layer	А	В	С	D		
Influence Factor, a/Z	10.0	3.3	2.1	1.5		
Influence Factor, b/Z	2.5	0.8	0.5	0.4		
Influence Factor, I (Boussinesq)	1.00	0.94	0.86	0.82		
Pressure Increase, $\Delta P = Qn \times I$	1438	1351	1236	1179		
Settlement/Layer (inches)	0.8	0.4	0.2	0.2		
Cumulative Settlement from bottom up (in)	1.6	0.8	0.4	0.2		
Estimated Total Settlement (inches)	1.6					

Slide Analysis Information

Ohio River Greenway - Phase II

Project Summary

Slide Modeler Version:	9.018
Author:	SM
Company:	CTL
Date Created:	5/26/2023

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
	GLE/Morgenstern-Price with interslice force function (Half Sine)
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Surface Options

Surface Type:	Circular
Search Method:	Auto Refine Search
Divisions along slope:	20
Circles per division:	10
Number of iterations:	10
Divisions to use in next iteration:	50%
Composite Surfaces:	Disabled
Minimum Elevation:	Not Defined
Minimum Depth [ft]:	4
Minimum Area:	Not Defined
Minimum Weight:	Not Defined
5	

Loading

2 Distributed Loads present			
Distribut	ed Load 1		
Distribution:	Constant		
Magnitude [psf]:	250		
Orientation:	Normal to boundary		
Distributed Load 2			
Distribution:	Constant		
Magnitude [psf]:	250		
Orientation:	Normal to boundary		

Materials

Ex. Fill	
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	125
Cohesion [psf]	750
Friction Angle [deg]	0
Water Surface	Water Table
Hu Value	1
Si Cl Lo	
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	1000
Friction Angle [deg]	0
Water Surface	Water Table
Hu Value	1
Sand	
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	0
Friction Angle [deg]	29
Water Surface	Water Table
Hu Value	1
Limestone	
Color	
Strength Type	Infinite strength
Unit Weight [lbs/ft3]	145
Allow Sliding Along Boundary	Yes
Water Surface	Water Table
Hu Value	0
Emb. Fill	
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	0
Friction Angle [deg]	34
Water Surface	Water Table
Hu Value	1

Entity Information

<u>Water Table</u>

	X	Y	
-80	42	4	
75	42	4	

Distributed Load

	X	Y
-56	4	148
-80	4	148

Distributed Load

	X	Y	
5	442.5		
-5	442.5		

External Boundary

X	Y
-80	448
-80	435
-80	424
-80	416
-80	414
75	414
75	416
75	424
49	425
7	442
5	442.5
-5	442.5
-7	442.5
-13	441
-20.5	438.5
-42	446
-56	448

Material Boundary

X	Y
-20.5	438.5
-14.603	435.104
-7	432
10	429.5
49	425

Material Boundary

	X	Y
-80		435
-14.603		435.104

Material Boundary

	X		Y
-80		424	
75		424	

Material Boundary

	X		Y
-80		416	
75		416	

Slide Analysis Information

Ohio River Greenway - Phase II

Project Summary

Slide Modeler Version:	9.018
Compute Time:	00h:00m:04.658s
Author:	SM
Company:	CTL
Date Created:	5/26/2023

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
GLE/Morgenstern-Price with interslice force function (Half Sine)	
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Surface Options

Search Method:	Cuckoo Search
Initial # of Surface Vertices:	8
Maximum Iterations:	500
Number of Nests:	50
Minimum Elevation:	Not Defined
Minimum Depth [ft]:	4
Minimum Area:	Not Defined
Minimum Weight:	Not Defined
Convex Surfaces Only:	Enabled

Loading

2 Distributed Loads present		
Distributed Load 1		
Distribution:	Constant	
Magnitude [psf]:	250	
Orientation:	Normal to boundary	
Distributed Load 2		
Distribution:	Constant	
Magnitude [psf]:	250	
Orientation:	Normal to boundary	

Materials

Ex. Fill	
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	125
Cohesion [psf]	100
Friction Angle [deg]	20
Water Surface	Water Table
Hu Value	1
Si Cl Lo	
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	200
Friction Angle [deg]	20
Water Surface	Water Table
Hu Value	1
Sand	
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	0
Friction Angle [deg]	29
Water Surface	Water Table
Hu Value	1
Limestone	
Color	
Strength Type	Infinite strength
Unit Weight [lbs/ft3]	145
Allow Sliding Along Boundary	Yes
Water Surface	Water Table
Hu Value	0
Emb. Fill	
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	0
Friction Angle [deg]	34
Water Surface	Water Table
Hu Value	1

Entity Information

<u>Water Table</u>

	X	Y	
-80	42	4	
75	42	4	

Distributed Load

	X	Y
-56	4	148
-80	4	148

Distributed Load

	X	Y	
5	442.5		
-5	442.5		

External Boundary

X	Y
-80	448
-80	435
-80	424
-80	416
-80	414
75	414
75	416
75	424
49	425
7	442
5	442.5
-5	442.5
-7	442.5
-13	441
-20.5	438.5
-42	446
-56	448

Material Boundary

X	Y
-20.5	438.5
-14.603	435.104
-7	432
10	429.5
49	425

Material Boundary

	X	Y
-80		435
-14.603		435.104

Material Boundary

	X		Y
-80		424	
75		424	

Material Boundary

	X		Y
-80		416	
75		416	

Slide Analysis Information

Ohio River Greenway - Phase II

Analysis Options

Slices Type:	Vertical	
Analysis Methods Used		
GLE/Morgenstern-Price with interslice force function (Half Sine)		
Number of slices:	50	
Tolerance:	0.005	
Maximum number of iterations:	75	
Check malpha < 0.2:	Yes	
Create Interslice boundaries at intersections with water tables and piezos:	Yes	
Initial trial value of FS:	1	
Steffensen Iteration:	Yes	

Surface Options

Search Method:	Cuckoo Search
Initial # of Surface Vertices:	8
Maximum Iterations:	500
Number of Nests:	50
Minimum Elevation:	Not Defined
Minimum Depth [ft]:	4
Minimum Area:	Not Defined
Minimum Weight:	Not Defined
Convex Surfaces Only:	Enabled

Loading

2 Distributed Loads present		
Distributed Load 1		
Distribution:	Constant	
Magnitude [psf]:	250	
Orientation:	Normal to boundary	
	Distributed Load 2	
Distribution:	Constant	
Magnitude [psf]:	250	
Orientation:	Normal to boundary	

Materials

Ex. Fill	
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	125
Cohesion [psf]	100
Friction Angle [deg]	20
Water Surface	Water Table
Hu Value	1
Si Cl Lo	
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	200
Friction Angle [deg]	20
Water Surface	Water Table
Hu Value	1
Sand	
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	0
Friction Angle [deg]	29
Water Surface	Water Table
Hu Value	1
Limestone	
Color	
Strength Type	Infinite strength
Unit Weight [lbs/ft3]	145
Allow Sliding Along Boundary	Yes
Water Surface	Water Table
Hu Value	0
Emb. Fill	
Color	
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	120
Cohesion [psf]	0
Friction Angle [deg]	34
Water Surface	Water Table
Hu Value	1

Entity Information

Water Table

X	Y
-80	448
-56	448
-42	446
-20.5	438.5
-14.603	435.104
-7	432
10	429.5
49	425
75	424

Distributed Load

	X		Y	
-56		448		
-80		448		

Distributed Load

	X		Y
5		442.5	
-5		442.5	

External Boundary

X	Y
-80	448
-80	435
-80	424
-80	416
-80	414
75	414
75	416
75	424
49	425
7	442
5	442.5
-5	442.5
-7	442.5
-13	441
-20.5	438.5
-42	446
-56	448

Material Boundary

X	Y
-20.5	438.5
-14.603	435.104
-7	432
10	429.5
49	425

Material Boundary

	X	Y
-80		435
-14.603		435.104

Material Boundary

	X	Y
-80	42	4
75	42	4

Material Boundary

	X		Y	
-80		416		
75		416		

APPENDIX G

PRELIMINARY RETAINING WALL ANALYSES

Ohio River Greenway Station 23+00

PRESSURE, SHEAR, MOMENT, AND DEFLECTION DIAGRAMS

Based on pile spacing: 6.0 foot or meter

User Input Pile, HP12X53: E (ksi)=29000.0, I (in4)/pile=393.0

File: O:\PROJECT\2023\IND-05\23050035IND\Design\Analyses\Shoring\23+00_SPL.sh8

<ShoringSuite> CIVILTECH SOFTWARE USA www.civiltech.com

Ohio River Greenway Station 23+00

Licensed to AK CTL Engineering, Inc. Date: 6/4/2023 File: O:\PROJECT\2023\IND-05\23050035IND\Design\Analyses\Shoring\23+00_SPL.sh8

Wall Height=6.6 Pile Diameter=1.0 Pile Spacing=6.0 Wall Type: 2. Soldier Pile, Drilled

PILE LENGTH: Min. Embedment=10.91 Min. Pile Length=17.51 MOMENT IN PILE: Max. Moment=149.16 per Pile Spacing=6.0 at Depth=15.01

PILE SELECTION:

Request Min. Section Modulus = 54.2 in3/pile=888.85 cm3/pile, Fy= 50 ksi = 345 MPa, Fb/Fy=0.66 HP12X53 has Section Modulus = 66.7 in3/pile=1093.01 cm3/pile. It is greater than Min. Requirements! Top Deflection = 0.31(in) based on E (ksi)=29000.00 and I (in4)/pile=393.0

DRIVING PRESSURES (ACTIVE, WATER, & SURCHARGE): Pressures below will be multiplied by a Factor =1.3

Z1	P1	Z2	P2	Slope	
*	Above	Base			
0.000	0.000	2.000	0.083	0.041667	
2.000	0.083	6.000	0.167	0.020867	
6.000	0.226	6.600	0.243	0.028071	
*	Below	Base			
6.600	0.219	10.000	0.399	0.052895	
10.000	0.241	15.000	0.295	0.010850	
15.000	-199.038	59.400	-195.483	0.080057	
*	Water	Pres.			
2.000	0.000	6.600	0.287	0.062400	
6.600	0.287	59.400	0.287	0.000000	
*	Sur-	charge			
0.000	0.000	0.500	0.031	0.061989	
0.500	0.031	1.000	0.054	0.046686	
1.000	0.054	1.500	0.068	0.027259	
1.500	0.068	2.000	0.074	0.012008	
2.000	0.074	2.500	0.075	0.002344	
2.500	0.075	3.000	0.074	-0.003189	

3.000	0.074	3.500	0.070	-0.006175	
3.500	0.070	4.000	0.067	-0.007675	
4.000	0.067	4.500	0.062	-0.008318	
4.500	0.062	5.000	0.058	-0.008462	
5.000	0.058	5.500	0.054	-0.008313	
5.500	0.054	6.000	0.050	-0.007994	
6.000	0.050	6.500	0.046	-0.007580	
6.500	0.046	7.000	0.043	-0.007117	
7.000	0.043	7.500	0.039	-0.006634	
7.500	0.039	8.000	0.036	-0.006152	
8.000	0.036	8.500	0.033	-0.005682	
8.500	0.033	9.000	0.031	-0.005232	
9.000	0.031	9.500	0.028	-0.004807	
9.500	0.028	10.000	0.026	-0.004409	
10.000	0.026	11.000	0.022	-0.003868	
11.000	0.022	12.000	0.019	-0.003239	
12.000	0.019	13.000	0.016	-0.002710	
13.000	0.016	14.000	0.014	-0.002270	
14.000	0.014	15.000	0.012	-0.001905	
15.000	0.012	16.000	0.011	-0.001604	
16.000	0.011	17.000	0.009	-0.001355	
17.000	0.009	18.000	0.008	-0.001149	
PASSIVE PRESSURES	:				
Z1	P1	Z2	P2	Slope	
*	Below	Base		•	
9.600	0.392	10.000	0.444	0.130643	
10.000	0.607	15.000	1.566	0.191807	
15.000	199.061	59.400	202.729	0.082633	
ACTIVE SPACING:					
No.		Z depth		Spacing	
1		0.00		6.00	
2		6.60		1.00	
PASSIVE SPACING:					
No.		Z depth		Spacing	
1		6.60		2.00	

UNITS: Width,Spacing,Diameter,Length,and Depth - ft; Force - kip; Moment - kip-ft Friction,Bearing,and Pressure - ksf; Pres. Slope - kip/ft3; Deflection - in

SHORING WALL CALCULATION SUMMARY The leading shoring design and calculation software Software Copyright by CivilTech Software www.civiltech.com

ShoringSuite Software is developed by CivilTech Software, Bellevue, WA, USA. The calculation method is based on the following references: 1. FHWA 98-011, FHWA-RD-97-130, FHWA SA 96-069, FHWA-IF-99-015 2. STEEL SHEET PILING DESIGN MANUAL by Pile Buck Inc., 1987 3. DESIGN MANUAL DM-7 (NAVFAC), Department of the Navy, May 1982 4. TRENCHING AND SHORING MANUAL Revision 12, California Department of Transportation, January 2000 6. EARTH SUPPORT SYSTEM & RETAINING STRUCTURES, Pile Buck Inc. 2002 5. DESIGN OF SHEET PILE WALLS, EM 1110-2-2504, U.S. Army Corps of Engineers, 31 March 1994 7. EARTH RETENTION SYSTEMS HANDBOOK, Alan Macnab, McGraw-Hill. 2002 8. Temporary Structures in Construction, Robert T. Ratay (Co-author of Chapter 7: John J. Peirce), McGraw-Hill. 2012 9. AASHTO HB-17, American Association of State and Highway Transportation Officials, 2 September 2002 Width/Spacing/Diameter/Length/Depth - ft, Force - kip, Moment - kip-ft, UNITS: Friction/Bearing/Pressure - ksf, Pres. Slope - kip/ft3, Deflection - in ----------Licensed to AK CTL Engineering, Inc. Date: 6/4/2023 File: 0:\PROJECT\2023\IND-05\23050035IND\Design\Analyses\Shoring\23+00 SPL.sh8 Title: Ohio River Greenway Subtitle: Station 23+00 Wall Type: 2. Soldier Pile, Drilled Wall Height: 6.60 Pile Diameter: 1.00 Pile Spacing: 6.00 Factor of Safety (F.S.): 1.00 Lateral Support Type (Braces): 1. No Top Brace Increase (Multi-Bracing): Add 15%* Embedment Option: 1. Yes Friction at Pile Tip: No Pile Properties: Steel Strength, Fy: 50 ksi = 345 MPa Allowable Fb/Fy: 0.66 Elastic Module, E: 29000.00 Moment of Inertia, I: 393.00 User Input Pile: HP12X53 * DRIVING PRESSURE (ACTIVE, WATER, & SURCHARGE) * The pressures below will be multiplied by a Factor =1.3 No. Z1 top Top Pres. Z2 bottom Bottom Pres. Slope _____ * 1 Above Base

2	0.000	0.000	2.000	0.083	0.041667
3	2.000	0.083	6.000	0.167	0.020867
4	6.000	0.226	6.600	0.243	0.028071
5	*	Below	Base		
6	6.600	0.219	10.000	0.399	0.052895
7	10.000	0.241	15.000	0.295	0.010850
8	15.000	-199.038	59	.400 -	195.483
0.0800	57				
9	*	Water	Pres.		
10	2.000	0.000	6.600	0.287	0.062400
11	6.600	0.287	59.400	0.287	0.00000
12	*	Sur-	charge		
13	0.000	0.000	0.500	0.031	0.061989
14	0.500	0.031	1.000	0.054	0.046686
15	1.000	0.054	1.500	0.068	0.027259
16	1.500	0.068	2.000	0.074	0.012008
17	2.000	0.074	2.500	0.075	0.002344
18	2.500	0.075	3.000	0.074	-0.003189
19	3.000	0.074	3,500	0.070	-0.006175
20	3,500	0.070	4.000	0.067	-0.007675
21	4 999	0 067	4 500	0 062	-0 008318
22	4.500	0.007	5 000	0.002	-0 008462
22	5 000	0.002	5 500	0.050	-0.000-02
2/	5 500	0.050	6 000	0.054	_0 00799/
25	5.000	0.054	6 500	0.050	-0.007590
25	6 500	0.016	7 000	0.040	0.007500
20	7 000	0.040	7.500	0.045	-0.00/11/
27	7.000	0.045	2 000	0.039	-0.000034
20	9 000	0.035	8.000	0.030	0.000132
29	8.000	0.030	0.000	0.035	-0.005002
50 51	0.000	0.021	9.000	0.031	-0.005252
22	9.000	0.029	9.500	0.020	-0.004007
52 22	9.500	0.028	10.000	0.020	-0.004409
33	10.000	0.020	11.000	0.022	-0.003868
34 25	11.000	0.022	12.000	0.019	-0.003239
35	12.000	0.019	13.000	0.016	-0.002/10
30	13.000	0.016	14.000	0.014	-0.002270
37	14.000	0.014	15.000	0.012	-0.001905
38	15.000	0.012	16.000	0.011	-0.001604
39	16.000	0.011	17.000	0.009	-0.001355
40	17.000	0.009	18.000	0.008	-0.001149
41	18.000	0.008	19.000	0.00/	-0.000978
42	19.000	0.00/	20.000	0.006	-0.000835
43	20.000	0.006	22.000	0.005	-0.00066/
44	22.000	0.005	24.000	0.004	-0.000499
45	24.000	0.004	26.000	0.003	-0.0003/9
46	26.000	0.003	28.000	0.003	-0.000292
47	28.000	0.003	30.000	0.002	-0.000228
48	30.000	0.002	32.000	0.002	-0.000180
49	32.000	0.002	34.000	0.002	-0.000144
50	34.000	0.002	36.000	0.001	-0.000116
51	36.000	0.001	38.000	0.001	-0.000095
52	38.000	0.001	40.000	0.000	-0.000580

* PASSIVE PRESSURE * No. Z1 top Top Pres. Z2 bottom Bottom Pres. Slope

1 * 2 9.600 3 10.000 4 15.000 Below 0.392 0.607 Base 10.000 0.444 15.000 1.566 Base 0.130643 0.191807 1.566 199.061 59.400 202.729 0.082633 _____ * ACTIVE SPACE * No. Z depth Spacing ------------1 0.00 2 6.60 6.00 1.00 _____ * PASSIVE SPACE * No. Z depth Spacing -----1 6.60 2.00 _____ *For Tieback: Input1 = Diameter; Input2 = Bond Strength *For Plate: Input1 = Diameter; Input2 = Allowable Pressure *For Deadman: Input1 = Horz. Width; Input2 = Passive Pressure; *For Sheet Pile Anchor: Input1 = Horz. Width; Input2 = Passive Slope;

The calculated moment and shear are per pile spacing. Sheet piles are per one foot or meter; Soldier piles are per pile.

Top Pressures start at depth = 0.00

MOMENT equilibrium AT DEPTH=15.69 WITH EMBEDMENT OF 9.09 FORCE equilibrium AT DEPTH=17.51 WITH EMBEDMENT OF 10.91

The program calculates an embedment for moment equilibrium, then increase the embedment by 1.2

* EMBEDMENT Notes *

Based on USS Design Manual, first calculate embedment for moment equilibrium, then increased the embedment to get the design depth. The embedment for moment equilibrium is 9.09 The program calculates an embedment for moment equilibrium, then increase the embedment by 1.2 The total desigh embedment is 10.91 Embedment Information: If 20% increased, the total design embedment is 10.91 If 30% increased, the total design embedment is 11.81 If 40% increased, the total design embedment is 12.72 If 50% increased, the total design embedment is 13.63 * MOMENT IN PILE (per pile spacing)* Pile Spacing: sheet piles are one foot or one meter; soldier piles are one pile. Overall Maximum Moment = 149.16 at 15.01 Maximum Shear = 434.39Moment and Shear are per pile spacing: 6.0 foot or meter * VERTICAL LOADING * Vertical Loading from Braces = 0.00 Vertical Loading from External Load = 0.00 Total Vertical Loading = 0.00 Overall Maximum Moment = 149.16 at 15.01 The pile selection is based on the magnitude of the moment only. Axial force is neglected. Request Min. Section Modulus = 54.24 in3/pile = 888.85 cm3/pile, Fy= 50 ksi = 345 MPa, Fb/Fy=0.66HP12X53 has been found in Soldier Pile list! (English Units): Area= 15.5 in. Depth= 11.8 in. Width= 12 in. Height= 12 in. Flange thickness= 0.435 in. Web thickness= 0.435 in. Ix= 393 in4/pile Sx= 66.7 in3/pile Iy= 127 in4/pile Sy= 21.1 in3/pile (Metric Units): Ix= 163.57 x100cm4/pile Sx= 1093.01 cm3/pile Iy= 52.86 x100cm4/pile Sy= 345.77 cm3/pile The pile selection is based on the magnitude of the moment only. Axial force is neglected. HP12X53 is capable to support the shoring! Top deflection = 0.310(in)Max. deflection = 0.310(in) Max. Pressure above base = 0.75Piles are more rigid than timber lagging, due to arching, only portion of pressures

are acting to lagging, 30-50% loading is suggested. If 50% loading is used for lagging design, Design Pressure = 0.37 Pile Spacing =6.0, Max. Moment in lagging = 1.68 For 4"x12" Timber, Section Modules S=23.47 in3. The request allowable bending strength, fb=M/S=0.86 For 6"x12" Timber, Section Modules S=57.98 in3. The request allowable bending strength, fb=M/S=0.35 If 30% loading is used for lagging design, Design Pressure = 0.22 Pile Spacing =6.0, Max. Moment in lagging = 1.01 For 4"x12" Timber, Section Modules S=23.47 in3. The request allowable bending strength, fb=M/S=0.52 For 6"x12" Timber, Section Modules S=57.98 in3. The request allowable bending strength, fb=M/S=0.52 For 6"x12" Timber, Section Modules S=57.98 in3. The request allowable bending strength, fb=M/S=0.21 Unit: Pressure: ksf, Spacing: ft, Moment: kip-ft, Bending Strength, fb: ksi

Ohio River Greenway Station 23+00

<EarthPres> CIVILTECH SOFTWARE www.civiltech.com * Licensed to AK CTL Engineering, Inc. UNITS: DEPTH/DISTANCE: ft, UNIT WEIGHT: pcf, FORCE: kip/ft, PRESSURE: ksf, SLOPE: kcf Date: 6/4/2023 File: O:\PROJECT\2023\IND-05\23050035IND\Design\Analyses\Shoring\Station 23+00-6.6.ep8

* INPUT DATA *

Wall Heigh	t=6.6 Total S	oil Types= 4					
Soil No.	Weight	Saturate	Phi	Cohesion	Nspt	Туре	Description
1	125.0	125.0	30	0.0	0	4	Fill
2	120.0	120.0	23	0.0	0	1	Si Cl Lo
3	120.0	120.0	32	0.0	0	4	Sand
4	140.0	140.0	0	100	0	4	Limestone

Ground Surface at Active Side:								
Line	Z1	Xa1	Z2	Xa2	Soil No.	Description		
1	0.0	0.0	0.0	14.0	1	Fill		
2	0.0	14.0	-12.0	800.0	1	Fill		
3	6.0	0.0	5.0	4.0	2	Si Cl Lo		
4	5.0	4.0	2.0	5.0	2	Si Cl Lo		
5	2.0	5.0	2.0	14.0	2	Si Cl Lo		
6	2.0	14.0	-11.0	800.0	2	Si Cl Lo		
7	10.0	0.0	10.0	800.0	3	Sand		
8	15.0	0.0	15.0	800.0	4	Limestone		

Water Table at Active Side:							
Point	Z-water	X-water					
1	2.0	0.0					
2	2.0	800.0					

Ground Surface at Passive Side:

Line	Z1	Xp1	Z2	Xp2	Soil No.	Description
1	6.6	0.0	10.0	800.0	2	Si Cl Lo
2	10.0	0.0	11.0	800.0	3	Sand
3	15.0	0.0	20.0	800.0	4	Limestone

Water Table at Passive Side:

Point	Z-water	X-water
1	6.6	0.0
2	6.6	800.0

Wall Friction Options: 1.* No wall friction Wall Batter Angle = 0 Apparent Pressure Conversion: 1.* Default (Terzaghi and Peck)* Water Density = 62.4 Water Pressure: 1.* No seepage at wall tip

* OUTPUT RESULTS *

Total Force above Base= 0.72 per one linear foot (or meter) width along wall height Total Static Force above Base= 0.72

Driving Pressure above Base - Output to Shoring - Multiplier of Pressure = 1

Z1	Pa1	Z2	Pa2	Slope	Coef.
0.00	0.00	2.00	0.08	0.0417	0.3333
2.00	0.08	6.00	0.17	0.0209	0.3623
6.00	0.23	6.60	0.24	0.0281	0.4873

Driving Pressure below Base - Output to Shoring - Multiplier of Pressure = 1

Z1	Pa1	Z2	Pa2	Slope	Ka or Ko
6.60	0.22	10.00	0.40	0.0529	0.9183
10.00	0.26	13.20	0.26	0.0010	0.0177

Passive Pressure below Base - Output to Shoring - Multiplier of Pressure = 1

Z1	Pp1	Z2	Pp2	Slope	Кр
9.60	0.39	10.00	0.44	0.131	2.2681
10.00	0.60	13.20	1.23	0.195	3.3935

Water Pressure - Output to Shoring - Multiplier of Pressure = 1

No	Z1	Pw1	Z2	Pw2	kw1
0	2.00	0.00	6.60	0.29	0.06
1	6.60	0.29	13.20	0.29	0.00

UNITS: DEPTH/DISTANCE: ft, UNIT WEIGHT: pcf, FORCE: kip/ft, PRESSURE: ksf, SLOPE: kcf Date: 6/4/2023 File Name: O:\PROJECT\2023\IND-05\23050035IND\Design\Analyses\Shoring\Station 23+00-6.6.ep8

		·
2.0	9.0	.25

UNITS: LENGTH/DEPTH: ft, Qpoint: kip, Qline: kip/ft, Qstrip/Qarea/PRESSURE: ksf

Ohio River Greenway 19+50

PRESSURE, SHEAR, MOMENT, AND DEFLECTION DIAGRAMS

Based on pile spacing: 6.0 foot or meter

User Input Pile, HP12X53: E (ksi)=29000.0, I (in4)/pile=393.0

File: O:\PROJECT\2023\IND-05\23050035IND\Design\Analyses\Shoring\23+00_SPL.sh8

<ShoringSuite> CIVILTECH SOFTWARE USA www.civiltech.com

Ohio River Greenway 19+50

Licensed to AK CTL Engineering, Inc. Date: 6/4/2023 File: O:\PROJECT\2023\IND-05\23050035IND\Design\Analyses\Shoring\23+00_SPL.sh8

Wall Height=3.7 Pile Diameter=1.0 Pile Spacing=6.0 Wall Type: 2. Soldier Pile, Drilled

PILE LENGTH: Min. Embedment=21.60 Min. Pile Length=25.30 MOMENT IN PILE: Max. Moment=109.90 per Pile Spacing=6.0 at Depth=21.01

PILE SELECTION:

Request Min. Section Modulus = 40.0 in3/pile=654.86 cm3/pile, Fy= 50 ksi = 345 MPa, Fb/Fy=0.66 HP12X53 has Section Modulus = 66.7 in3/pile=1093.01 cm3/pile. It is greater than Min. Requirements! Top Deflection = 0.27(in) based on E (ksi)=29000.00 and I (in4)/pile=393.0

DRIVING PRESSURES (ACTIVE, WATER, & SURCHARGE): Pressures below will be multiplied by a Factor =1.3

Z1	P1	Z2	P2	Slope	
*	Above	Base			
0.000	0.000	3.700	0.194	0.052564	
*	Below	Base			
3.700	0.194	9.000	0.473	0.052564	
9.000	0.473	16.000	0.650	0.025231	
16.000	0.512	21.000	0.613	0.020198	
21.000	-198.405	37.000	-196.925	0.092492	
*	Sur-	charge			
0.000	0.000	0.500	0.031	0.061989	
0.500	0.031	1.000	0.054	0.046686	
1.000	0.054	1.500	0.068	0.027259	
1.500	0.068	2.000	0.074	0.012008	
2.000	0.074	2.500	0.075	0.002344	
2.500	0.075	3.000	0.074	-0.003189	
3.000	0.074	3.500	0.070	-0.006175	
3.500	0.070	4.000	0.067	-0.007675	
4.000	0.067	4.500	0.062	-0.008318	
4.500	0.062	5.000	0.058	-0.008462	

5.000	0.058	5.500	0.054	-0.008313	
5.500	0.054	6.000	0.050	-0.007994	
6.000	0.050	6.500	0.046	-0.007580	
6.500	0.046	7.000	0.043	-0.007117	
7.000	0.043	7.500	0.039	-0.006634	
7.500	0.039	8.000	0.036	-0.006152	
8.000	0.036	8.500	0.033	-0.005682	
8.500	0.033	9.000	0.031	-0.005232	
9.000	0.031	9.500	0.028	-0.004807	
9.500	0.028	10.000	0.026	-0.004409	
10.00	0 0.026	11.000	0.022	-0.003868	
11.00	0 0.022	12.000	0.019	-0.003239	
12.00	0 0.019	13.000	0.016	-0.002710	
13.00	0 0.016	14.000	0.014	-0.002270	
14.00	0 0.014	15.000	0.012	-0.001905	
15.00	0 0.012	16.000	0.011	-0.001604	
16.00	0 0.011	17.000	0.009	-0.001355	
17.00	0.009	18.000	0.008	-0.001149	
18.00	0.008	19.000	0.007	-0.000978	
19.00	0 0.007	20.000	0.006	-0.000835	
20.00	0.006	22.000	0.005	-0.000667	
22.00	0 0.005	24.000	0.004	-0.000499	
24.00	0 0.004	26.000	0.003	-0.000379	
PASSIVE PRESSU	RES:				
Z1	P1	Z2	P2	Slope	
*	Below	Base			
3.700	0.000 0	6.700	0.251	0.083732	
6.700	0.251	9.000	0.328	0.033566	
9.000	0.328	9.700	0.241	-0.124641	
9.700	0.187	12.700	0.664	0.159187	
12.70	0 0.612	16.000	0.921	0.093841	
16.00	0 1.506	21.000	1.707	0.040251	
21.00	0 194.213	21.700	200.704	9.272829	
21.70	0 199.603	24.700	200.029	0.142114	
24.70	0 200.025	27.700	200.409	0.128097	
ACTIVE SPACING:					
No.		Z depth		Spacing	
1		0.00		6.00	
2		3.70		1.00	
PASSIVE SPACING	:				
No.		Z depth		Spacing	
1		3.70		1.00	

UNITS: Width,Spacing,Diameter,Length,and Depth - ft; Force - kip; Moment - kip-ft Friction,Bearing,and Pressure - ksf; Pres. Slope - kip/ft3; Deflection - in

SHORING WALL CALCULATION SUMMARY The leading shoring design and calculation software Software Copyright by CivilTech Software www.civiltech.com

ShoringSuite Software is developed by CivilTech Software, Bellevue, WA, USA. The calculation method is based on the following references: 1. FHWA 98-011, FHWA-RD-97-130, FHWA SA 96-069, FHWA-IF-99-015 2. STEEL SHEET PILING DESIGN MANUAL by Pile Buck Inc., 1987 3. DESIGN MANUAL DM-7 (NAVFAC), Department of the Navy, May 1982 4. TRENCHING AND SHORING MANUAL Revision 12, California Department of Transportation, January 2000 6. EARTH SUPPORT SYSTEM & RETAINING STRUCTURES, Pile Buck Inc. 2002 5. DESIGN OF SHEET PILE WALLS, EM 1110-2-2504, U.S. Army Corps of Engineers, 31 March 1994 7. EARTH RETENTION SYSTEMS HANDBOOK, Alan Macnab, McGraw-Hill. 2002 8. Temporary Structures in Construction, Robert T. Ratay (Co-author of Chapter 7: John J. Peirce), McGraw-Hill. 2012 9. AASHTO HB-17, American Association of State and Highway Transportation Officials, 2 September 2002 Width/Spacing/Diameter/Length/Depth - ft, Force - kip, Moment - kip-ft, UNITS: Friction/Bearing/Pressure - ksf, Pres. Slope - kip/ft3, Deflection - in ----------Licensed to AK CTL Engineering, Inc. Date: 6/4/2023 File: 0:\PROJECT\2023\IND-05\23050035IND\Design\Analyses\Shoring\23+00 SPL.sh8 Title: Ohio River Greenway Subtitle: 19+50 Wall Type: 2. Soldier Pile, Drilled Wall Height: 3.70 Pile Diameter: 1.00 Pile Spacing: 6.00 Factor of Safety (F.S.): 1.00 Lateral Support Type (Braces): 1. No Top Brace Increase (Multi-Bracing): Add 15%* Embedment Option: 1. Yes Friction at Pile Tip: No Pile Properties: Steel Strength, Fy: 50 ksi = 345 MPa Allowable Fb/Fy: 0.66 Elastic Module, E: 29000.00 Moment of Inertia, I: 393.00 User Input Pile: HP12X53 * DRIVING PRESSURE (ACTIVE, WATER, & SURCHARGE) * The pressures below will be multiplied by a Factor =1.3 No. Z1 top Top Pres. Z2 bottom Bottom Pres. Slope _____ * 1 Above Base

2	0.000	0.000	3.700	0.194	0.052564
3	*	Below	Base		
4	3.700	0.194	9.000	0.473	0.052564
5	9.000	0.473	16.000	0.650	0.025231
6	16.000	0.512	21.000	0.613	0.020198
7	21.000	-198.405	3	7.000	-196.925
0.0924	192				
8	*	Sur-	charge		
9	0.000	0.000	0.500	0.031	0.061989
10	0.500	0.031	1.000	0.054	0.046686
11	1.000	0.054	1.500	0.068	0.027259
12	1.500	0.068	2.000	0.074	0.012008
13	2.000	0.074	2.500	0.075	0.002344
14	2.500	0.075	3.000	0.074	-0.003189
15	3.000	0.074	3.500	0.070	-0.006175
16	3.500	0.070	4.000	0.067	-0.007675
17	4.000	0.067	4.500	0.062	-0.008318
18	4.500	0.062	5.000	0.058	-0.008462
19	5.000	0.058	5.500	0.054	-0.008313
20	5.500	0.054	6.000	0.050	-0.007994
21	6.000	0.050	6.500	0.046	-0.007580
22	6.500	0.046	7.000	0.043	-0.007117
23	7.000	0.043	7.500	0.039	-0.006634
24	7.500	0.039	8.000	0.036	-0.006152
25	8.000	0.036	8.500	0.033	-0.005682
26	8.500	0.033	9.000	0.031	-0.005232
27	9.000	0.031	9.500	0.028	-0.004807
28	9.500	0.028	10.000	0.026	-0.004409
29	10.000	0.026	11.000	0.022	-0.003868
30	11.000	0.022	12.000	0.019	-0.003239
31	12.000	0.019	13.000	0.016	-0.002710
32	13.000	0.016	14.000	0.014	-0.002270
33	14.000	0.014	15.000	0.012	-0.001905
34	15.000	0.012	16.000	0.011	-0.001604
35	16.000	0.011	17.000	0.009	-0.001355
36	17.000	0.009	18.000	0.008	-0.001149
37	18.000	0.008	19.000	0.007	-0.000978
38	19.000	0.007	20.000	0.006	-0.000835
39	20.000	0.006	22.000	0.005	-0.000667
40	22.000	0.005	24.000	0.004	-0.000499
41	24.000	0.004	26.000	0.003	-0.000379
42	26.000	0.003	28.000	0.003	-0.000292
43	28.000	0.003	30.000	0.002	-0.000228
44	30.000	0.002	32.000	0.002	-0.000180
45	32.000	0.002	34.000	0.002	-0.000144
46	34.000	0.002	36.000	0.001	-0.000116
47	36.000	0.001	38.000	0.001	-0.000095
48	38.000	0.001	40.000	0.000	-0.000580

* PASSIVE PRESSURE *

No.	Z1 top	Top Pres.	Z2 bottom	Bottom Pres.	Slope		
1	*	Below	Base				
2	3.700	0.000	6.700	0.251	0.083732		
3	6.700	0.251	9.000	0.328	0.033566		
4	9.000	0.328	9.700	0.241	-0.124641		
----------------------------	--	--	--	--	----------------	--	--
5	9.700	0.187	12.700	0.664	0.159187		
6	12.700	0.612	16.000	0.921	0.093841		
7	16.000	1.506	21.000	1.707	0.040251		
8	21.000	194.213	21.700	200.704	9.272829		
9	21.700	199.603	24.700	200.029	0.142114		
10	24.700	200.025	27.700	200.409	0.128097		
11	27.700	200.411	30.700	200.784	0.124033		
12	30.700	200.772	33.700	201.071	0.099850		
13	33.700	201.060	36.700	201.293	0.077432		
14	36.700	201.293	37.000	201.316	0.077424		
*							
* ACIT	VE SPACE *	Concina					
NO.	z depth	Spacing					
1	 0 00	6 99					
2	3.70	1.00					
* PASS	IVE SPACE *						
No.	Z depth	Spacing					
1	3.70	1.00					
*For P *For D *For S	late: Input1 = eadman: Input1 heet Pile Anchor	Diameter; In = Horz. Width : Input1 = He	put2 = Allowable ; Input2 = Passi orz. Width; Inpu	Pressure ive Pressure; ut2 = Passive Slo	ope;		
*****	******	**************CAL	CULATION********	*******	*****		
The foot o	calculated mome r meter; Soldier	nt and shear a piles are pe	are per pile spac r pile.	cing. Sheet pil	es are per one		
Ton	Draccuras start	at denth - 1	0 00				
TOP		ac acpen -	0.00				
	D1=0.00						
:	== == D2=3.70						
		_					
	D3=25.3	0					
	DI - IUP DEPIH						
		N BASE					
	D3 - PILE TIP						

MOMENT equilibriumAT DEPTH=21.70WITH EMBEDMENT OF 18.00FORCE equilibriumAT DEPTH=25.30WITH EMBEDMENT OF 21.60

The program calculates an embedment for moment equilibrium, then increase the

* EMBEDMENT Notes * Based on USS Design Manual, first calculate embedment for moment equilibrium, then increased the embedment to get the design depth. The embedment for moment equilibrium is 18.00 The program calculates an embedment for moment equilibrium, then increase the embedment by 1.2 The total desigh embedment is 21.60 Embedment Information: If 20% increased, the total design embedment is 21.60 If 30% increased, the total design embedment is 23.40 If 40% increased, the total design embedment is 25.20 If 50% increased, the total design embedment is 27.00 * MOMENT IN PILE (per pile spacing)* Pile Spacing: sheet piles are one foot or one meter; soldier piles are one pile. Overall Maximum Moment = 109.90 at 21.01 Maximum Shear = 307.87Moment and Shear are per pile spacing: 6.0 foot or meter * VERTICAL LOADING * Vertical Loading from Braces = 0.00 Vertical Loading from External Load = 0.00 Total Vertical Loading = 0.00 Overall Maximum Moment = 109.90 at 21.01 The pile selection is based on the magnitude of the moment only. Axial force is neglected. Request Min. Section Modulus = 39.96 in3/pile = 654.86 cm3/pile, Fy= 50 ksi = 345 MPa, Fb/Fy=0.66 HP12X53 has been found in Soldier Pile list! (English Units): Area= 15.5 in. Depth= 11.8 in. Width= 12 in. Height= 12 in. Flange thickness= 0.435 in. Web thickness= 0.435 in. Ix= 393 in4/pile Sx= 66.7 in3/pile Iy= 127 in4/pile Sy= 21.1 in3/pile (Metric Units): Ix= 163.57 x100cm4/pile Sx= 1093.01 cm3/pile Iy= 52.86 x100cm4/pile Sy= 345.77 cm3/pile

The pile selection is based on the magnitude of the moment only. Axial force is neglected.

HP12X53 is capable to support the shoring!

Top deflection = 0.274(in)Max. deflection = 0.274(in) Max. Pressure above base = 0.34 Piles are more rigid than timber lagging, due to arching, only portion of pressures are acting to lagging, 30-50% loading is suggested. If 50% loading is used for lagging design, Design Pressure = 0.17Pile Spacing =6.0, Max. Moment in lagging = 0.77 For 4"x12" Timber, Section Modules S=23.47 in3. The request allowable bending strength, fb=M/S=0.39 For 6"x12" Timber, Section Modules S=57.98 in3. The request allowable bending strength, fb=M/S=0.16 If 30% loading is used for lagging design, Design Pressure = 0.10Pile Spacing =6.0, Max. Moment in lagging = 0.46 For 4"x12" Timber, Section Modules S=23.47 in3. The request allowable bending strength, fb=M/S=0.24 For 6"x12" Timber, Section Modules S=57.98 in3. The request allowable bending strength, fb=M/S=0.10 Unit: Pressure: ksf, Spacing: ft, Moment: kip-ft, Bending Strength, fb: ksi

Ohio River Greenway 19+50

<EarthPres> CIVILTECH SOFTWARE www.civiltech.com * Licensed to AK CTL Engineering, Inc. UNITS: DEPTH/DISTANCE: ft, UNIT WEIGHT: pcf, FORCE: kip/ft, PRESSURE: ksf, SLOPE: kcf Date: 6/4/2023 File: O:\PROJECT\2023\IND-05\23050035IND\Design\Analyses\Shoring\Station 19+50-3.7.ep8

* INPUT DATA *

Wall Heigh	nt=3.7 Total S	Soil Types= 3					
Soil No.	Weight	Saturate	Phi	Cohesion	Nspt	Туре	Description
1	120.0	120.0	23	0.0	0	2	Si Cl Lo
2	120.0	120.0	29	0.0	0	4	Sand
3	140.0	140.0	0	100	0	4	Limestone
Ground Su	urface at Active Si	ide:					
Line	Z1	Xa1	Z2	Xa2	Soil No.	Description	
1	0.0	0.0	0.0	14.0	1	Si Cl Lo	
2	0.0	14.0	-2.0	800.0	1	Si Cl Lo	
3	16.0	0.0	16.0	800.0	2	Sand	
4	21.0	0.0	21.0	800.0	3	Limestone	
Water Tab	le at Active Side:						
Point	Z-water	X-water					
1	9.0	0.0					
2	9.0	800.0					
Ground Su	Irface at Passive	Side:					
Line	Z1	Xp1	Z2	Xp2	Soil No.	Description	
1	3.7	0.0	11.0	12.0	1	Si Cl Lo	

800.0

1

Si Cl Lo

2

11.0

12.0

13.0

3	16.0	0.0	18.0	800.0	2	Sand
4	21.0	0.0	23.0	800.0	3	Limestone

Water Table at Passive Side:

Point	Z-water	X-water
1	9.0	0.0
2	9.0	800.0

Wall Friction Options: 1.* No wall friction Wall Batter Angle = 0 Apparent Pressure Conversion: 1.* Default (Terzaghi and Peck)* Water Density = 62.4 Water Pressure: 1.* No seepage at wall tip

* OUTPUT RESULTS *

Total Force above Base= 0.36 per one linear foot (or meter) width along wall height Total Static Force above Base= 0.36

Driving Pr	essure above Bas	e - Output to Shori	ng - Multiplier of	f Pressure = 1		
Z1	Pa1	Z2	Pa2	Slope	Coef.	
0.00	0.00	3.70	0.19	0.0526	0.4380	
Driving Pr	essure below Base	e - Output to Shori	ng - Multiplier of	Pressure = 1		
Z1	Pa1	Z2	Pa2	Slope	Ka or Ko	
3.70	0.19	7.40	0.39	0.0526	0.4380	
Passive P	ressure below Bas	se - Output to Shor	ing - Multiplier o	of Pressure = 1		
Z1	Pp1	Z2	Pp2	Slope	Кр	
3.70	0.00	6.70	0.25	0.084	0.6978	
6.70	0.25	7.40	0.31	0.084	0.6978	

UNITS: DEPTH/DISTANCE: ft, UNIT WEIGHT: pcf, FORCE: kip/ft, PRESSURE: ksf, SLOPE: kcf

Date: 6/4/2023 File Name: O:\PROJECT\2023\IND-05\23050035IND\Design\Analyses\Shoring\Station 19+50-3.7.ep8

		·
2.0	9.0	.25

UNITS: LENGTH/DEPTH: ft, Qpoint: kip, Qline: kip/ft, Qstrip/Qarea/PRESSURE: ksf